

Sizing DER for BTM Bill Reduction

Usecase 1 – DER-VET Application

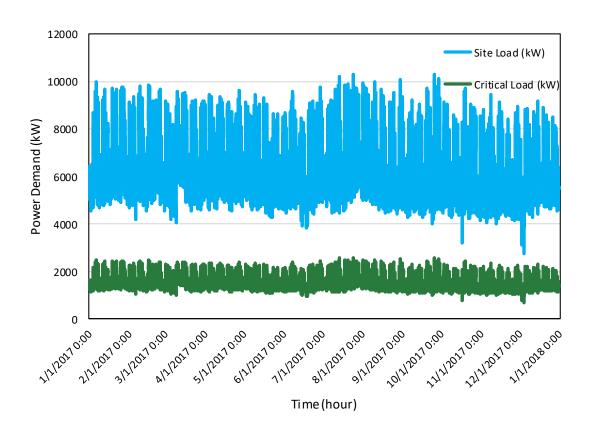
Overview

- Usecase1 Size BTM DER
 - Primary objective Customer bill reduction during grid connected days
 - Secondary objective Support critical load during grid outage

Input

- Annual load profiles (both critical load & site load), PV insolation profile and utility tariff
- DER Parameters (unit capital cost, O&M expense, battery efficiency)

Output


- DER mix and size
- New customer bill and improvements

Site Input Data and Assumptions

Customer Load Description

Annual site and critical load profile at hourly resolution for simulation year 2017

- The peak load demand is 10.2 MW
- Peak Critical load is 2.55 MW. It is 25% of the site load.

Utility Tariff Structure and Charges

Utility's Demand Charge and Energy Charges

Season	Period	Hours
	On Peak	12:00 – 18:00 (Weekdays)
Summer	Mid Peak	8:00 - 12:00 & 18:00 - 23:00
		(Weekdays)
	Off Peak	All other hours
Winter	Mid Peak	8:00 – 23:00 (Weekdays)
	Off Peak	All other hours

	Summer		Wi	nter	Demand
On Peak	Mid Peak	Off Peak	Mid Peak	Off Peak	Charge
\$0.262392/kWh	\$0.086152/kWh	\$0.049672/kWh	0.062392/kWh	\$0.054152/kWh	\$7.016/kW

DER Parameters

ES Parameters

Parameter	Value	
Size	To be sized by DERVET	
Li Ion Capital Cost	\$800/kW+\$250/kWh	
Fixed O&M	\$10/kW-yr	
Round Trip Efficiency	91%	

PV parameters

- 1MW PV plant PV size is known
- PV yearly irradiance profile is given as an input (kW/rated kW)
- PV location –tied to the AC side of the grid

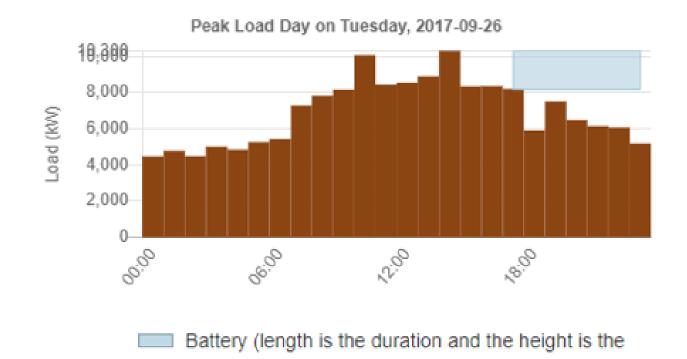
Before the Microgrid (Base Case) Electricity Bill

Annual Base Case Electricity Bill (2017)

Energy Cost	Demand Charge	Total Bill (Energy +Demand charge)
\$4,065,918	\$823,149	\$4,889,067

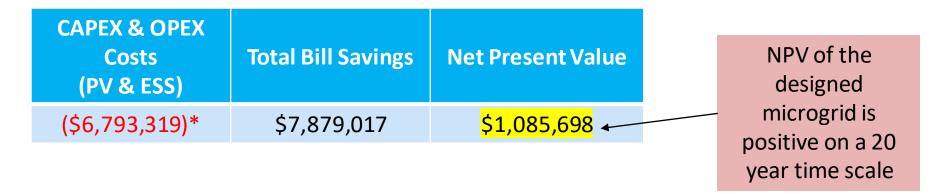
20 Year Present Value (2017-2036)

Inflation	Discount Rate	20 Year Present Value (2017-2036)
2.2%	6%	(\$66,666,609)*


*Negative value represents a cost

DER-VET Results and Discussion

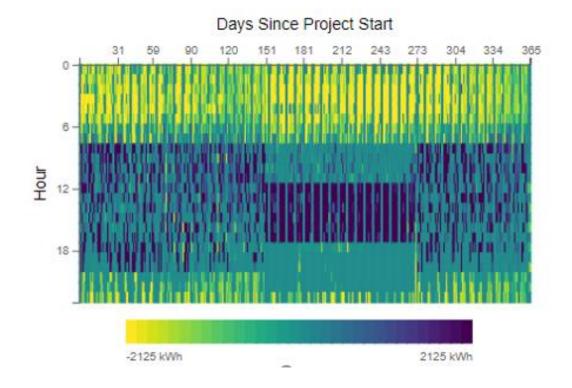
Design Summary


For the given load and PV profile, DER-VET finds an optimal Energy storage size – **2.12 MW, 6 hr**

capacity)

Financial Summary – 20 Year Net Present Value

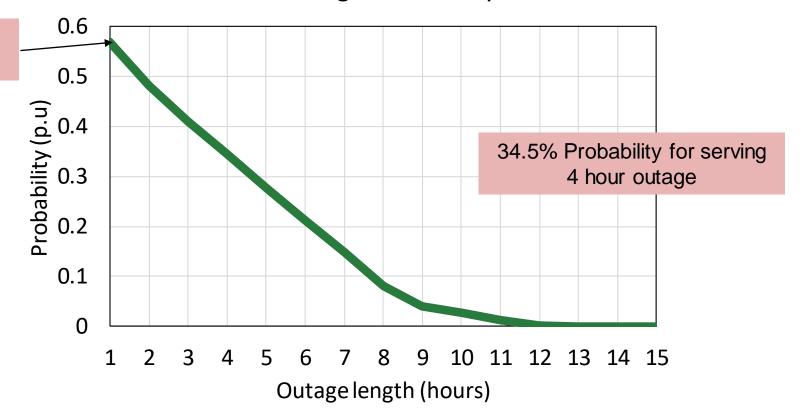
Comparing with baseline case, costs and benefits of DER investment are summarized below,



Financials Summary

Dispatch Summary (Grid Connected Days)

The energy storage system charges during morning and late night and discharges in the afternoon



Reliability Summary

Reliability of the designed microgrid is calculated during an outage

Load Coverage Probability

57% Probability for serving 1 hour outage

Together...Shaping the Future of Electricity