

BTM DER Sizing for Reliability Usecase 2 – DER-VET Application

in f
www.epri.com
© 2020 Electric Power Research Institute, Inc. All rights reserved.

Overview

- Usecase2 Size BTM DER
 - Primary objective Meet the reliability target during outage
 - Secondary objective Customer bill reduction during grid connected days

Input

- Reliability target = 4 hours
- Annual load profiles (both critical load & site load), PV insolation profile and utility tariff
- DER Parameters (unit capital cost, O&M expense, battery efficiency)
- Output
 - DER mix and size
 - New customer bill and improvements

Site Description and Assumptions

Customer Load Description

Annual site and critical load profile at hourly resolution for simulation year 2017

- The peak load demand is 10.2 MW
- Peak Critical load is 2.55 MW. It is 25% of the site load.

Utility Tariff Structure and Charges

Utility's Demand Charge and Energy Charges

Season	Period	Hours
	On Peak	12:00 – 18:00 (Weekdays)
Summer	Mid Peak	8:00-12:00 & 18:00-23:00
		(Weekdays)
	Off Peak	All other hours
Winter	Mid Peak	8:00 – 23:00 (Weekdays)
	Off Peak	All other hours

Summer			Winter		Demand
On Peak	Mid Peak	Off Peak	Mid Peak	Off Peak	Charge
\$0.262392/kWh	\$0.086152/kWh	\$0.049672/kWh	0.062392/kWh	\$0.054152/kWh	\$7.016/kW

DER Parameters

ES Parameters

Parameter	Value
Size	To be sized by DERVET
Li Ion Capital Cost	\$800/kW+\$250/kWh
Fixed O&M	\$10/kW-yr
Round Trip Efficiency	91%

PV parameters

- IMW PV plant PV size is known
- PV yearly irradiance profile is given as an input (kW/rated kW)
- PV location –tied to the AC side of the grid

Before the Microgrid (Base Case) Electricity Bill

Annual Base Case Electricity Bill (2017)

Energy Cost	Demand Charge	Total Bill (Energy +Demand charge)
\$4,065,918	\$823,149	\$4,889,067

20 Year Present Value (2017-2036)

Inflation	Discount Rate	20 Year Present Value (2017-2036)
2.2%	6%	(\$66,666,609)*

*Negative value represents a cost

DER-VET Results and Discussion

Design Summary

For the given load and PV profile, DER-VET finds an optimal Energy storage size – **2.303 MW 8.45 hr**

Reliability Summary

Primary objective of the designed microgrid is to meet Reliability target of 4 hrs

Financial Summary – 20 Year Net Present Value

Comparing with baseline case, costs and benefits of DER investment during grid connected days are summarized below,

CAPEX & OPEX Costs (PV & ESS)	Total Bill Savings	Net Present Value
(\$8,642,576)*	\$8,159,905	(\$482,671)*

Financials Summary

*Negative value represents a cost

Dispatch Summary Results (Grid Connected Days)

The energy storage system charges during morning and late night and discharges in the afternoon

Together...Shaping the Future of Electricity

