

Energy Storage, DER, and Microgrid Project Valuation EPRI DER-VETTM Analysis in Action

www.der-vet.com DER-VET Developer Team | EPRI

September 2022

The Challenges of Storage, DER*, & Microgrid Modeling

- Today's storage, DER, and microgrid deployments demand robust analysis for strategic planning
- Valuation of storage requires project-level analyses for specific applications and locations
- Complex co-optimization and decision-making process

*DER: Distributed Energy Resources

EPRI's DER-VET[™] addresses these challenges

The Solution: EPRI's DER-VET™

DER-VET

Dispatch

^{anuary 01,} 202

Bridges industry gaps in projectlevel energy storage, DER, and microgrid analysis

> Creates a common communication tool among all stakeholders

Evaluates various perspectives from customers values to grid values in any market

DER-VET[™] provides an open-source platform for calculating, understanding, and optimizing the value of DER based on their technical merits and constraints: <u>www.der-vet.com</u>

Input and Output Examples in DER-VET

DER-VET Project Configuration Example

ect Configuration	Project Configur	Project Configuration			
ibuted Energy Resources nviroScreen	Name	CAISO Pre-Defined Case			
	Start Year Analysis Window	2020 Year the project starts.			
	Analysis Horizon Mode	 User-defined The shortest DER lifetime The longest DER lifetime 	Define when to end cost benefit analysis. Choose it yourself, or by the lifetimes of your equipment		
	Analysis Horizon	10 years	The number of years the analysis will go for. The analysis will not consider equipment lifetime or anything else when determining the number of years to run for.		
	Time Series Data				
	Data Year (Baseline)	2020	Commonly the project start year. Data for additional years will be escalated from this value.		
	Timestep	60 v minutes	What is the frequency of the time-series data?		
	Grid Domain	 Generation Transmission Distribution Customer 	Which grid domain or location the project will be connected to. Please refer to documentation for further guidance on which services are available in your selected domain.		
	Ownership	 Customer Utility 3rd Party 	Who owns the assets?		
Run Configuration					
	Output Folder	Select folder	Folder where output files will be saved (optional).		

DER-VET Dispatch Results Example

Technologies in DER-VET

Services in DER-VET

Bulk Market Services

- Energy Time Shift
- Load Following
- Frequency Regulation
- Spinning Reserves
- Non-spinning Reserves
- Resource Adequacy Capacity

Services ^a •

T&D

Upgrade DeferralReliability/Resilience

Customer Services

- Retail Energy Time Shift
- Demand Charge Reduction
- Demand Response
- Reliability/Resilience

© 2022 Electric Power Research Institute, Inc. All rights reser

Long Duration Energy Storage Case Study

Long Duration Energy Storage (LDES) DER-VET Analysis

Туре	Technology	Acronym	TRL
	Concrete Thermal Energy Storage	CTES	4
	Electro-Thermal Energy Storage	ETES	3
	Gravitational Energy Storage	GES	6
	Liquid Air Energy Storage	LAES	6
	Lithium-Ion Battery Storage	Li-Ion	9

Base

 All technologies were run using the original pricing curves in each region 6, 8, and 10h (+4h for Li-Ion Benchmark)

Sensitivities

- Capital costs were adjusted +10% / -30%
- Energy prices were modified (mod) from their original (orig)
- RTE was adjusted +/- 5% points

18 Cases per Technology per Hours of Duration

	-		_			-		-	
Pricing	Orig								
RTE	Base	Base	Base	High	High	High	Low	Low	Low
Costs	Base	High	Low	Base	High	Low	Base	High	Low
Pricing	Mod								
RTE	Base	Base	Base	High	High	High	Low	Low	Base
Costs	Base	High	Low	Base	High	Low	Base	High	Base

Significant number of DER-VET cases: 1728 total

DER-VET Results: Tech Duration vs. Revenue Requirements

Revenue Requirement (\$/kW-yr)

Duration, hours	LDES A	LDES B	LDES C	LDES D	Li-ion
4					-23
6	-93	-39	-104	-70	38
8	-91	-36	-86	-60	103
10	-88	-34	-67	-50	170

Technology cost forecast is a key driver for LDES analysis

Transmission Solar + Energy Storage Case Study

LADWP Energy Storage + Solar Project

- Los Angeles Department of Water and Power (LADWP) required to study and procure energy storage
- 100 MW, 4-hour battery energy storage system
- 200 MW solar PV
- Power Purchase Agreement (PPA) able to claim Federal Investment Tax Credit (FITC) incentive

	Provide Energy Time Shift and Spinning Reserve	Restrict Charging from Grid	Restrict Charging from Grid and Discharge Min	Provide Frequency Response
Case #1	\checkmark		\checkmark	
Case #2	\checkmark		\checkmark	\checkmark
Case #3	\checkmark	\checkmark		
Case #4	\checkmark	\checkmark		\checkmark

LADWP Full Report: Integrating Energy Storage System with Photovoltaic Generation: Analysis within Los Angeles Department of Water and Power (LADWP) Service Territory to Meet SB801 Requirements at <u>http://www.epri.com/abstracts/Pages/ProductAbstract.aspx?ProductId=000000003002013007</u>

LADWP Case Results - Dispatch

Impact of grid charging constraints:

DER-VET Optimized Dispatch Outputs

LADWP Case Results - CBA

 Several cases resulted in benefit-cost ratios greater than one for project starts years after 2022 as illustrated in the graph below

Microgrid Design for PSPS Events

Microgrid Design - DER-VET Modeling Assumptions

- Identify potential Public Safety Power Shutoff (PSPS) planned events and duration in California
- Solar PV plus battery energy storage microgrid technologies
- Initial storage state of charge at the start of outage event is 100% with advanced PSPS notifications

Load and PV Profile

LA – Sec School

SCE Feeder

Peak load – 1.4 MW 24hr load requirement – 28MWh 36hr load requirement – 43MWh 48hr load requirement – 55MWh

Peak load – 2.16 MW 24hr load requirement – 35MWh 36hr load requirement – 48MWh 48hr load requirement – 76MWh

Microgrid Sizing Results

LA – Sec School

LA - Hospital

SCE Feeder

The energy storage and PV size corresponding to the knee point. Knee-point is a point where adding more PV does not affect the size of energy storage significantly.

Microgrid Cost Summary

LA – Sec School

LA - Hospital

SCE Feeder

DER-VET Engagement

- Download the tool for free
- Reference case examples
- Help and documentation
- Engage with monthly Public ESIC Task Force Web Meetings
- Additional Case Studies in Appendix:
 - More details from case studies presented
 - T&D Upgrade Deferral
 - Military Installation Microgrid
 - Utility-Sited PSPS Microgrid

Together...Shaping the Future of Energy®

Additional DER-VET Background

DER-VET™ User Group

OBJECTIVES:

- Demonstrate application and economic decision-making opportunities to promote the applicability of microgrids and DER deployments
- Provide a forum to support tool usability, applicability, and user supported feature improvements
- Create a user community to learn and share experience and hare in training on DER-VET through meetings and webcasts

APPROACH:

- Access to advanced DER-VET modules, features, and datasets that promote tool usability and user experience
- Annual Meeting to provide updates on tool functionality, facilitate user experience sharing, and solicit inputs for tool development direction, new features, and updates
- Quarterly Webinars to share feedback of new feature development and case studies
- Personalized user training to facilitate for tool development and promote questions and answers

Personalized DER-VET User Training to Promote Applicability

DER-VET Optimization Framework

*DER-VET is an open-source software tool available at https://www.der-vet.com/

24

User-Defined Reliability Targets in DER-VET

Planned Outages:

100% or <100% load coverage for target hours of **planned** outages

• Un-planned Outages:

100% or <100% load coverage for target hours (ex. 4 hours) of any possible un-planned outages

Relational Definition:

Reliability target for every outage length

www.epri.com

Microgrid is designed to have probabilistic reliability equal to or greater than the target

Energy Storage Implementation Strategies in DER-VET

Degradation in DER-VET

- Only consider calendar and cycling degradation of energy capacity with no compounding stress factors
- Cycle life curve input and %/yr calendar degradation input
- Images from NREL's SAM tool (very similar degradation model)

Caldendar Degradation

CBA in DER-VET: Time Horizon Solution

- Analysis end time
 - Shortest lifetime of all assets
 - Longest lifetime of all assets
 - Something else user-defined
- Replacement
 - User can turn automated replacement on or off
- Remaining value/cost at end of analysis
 - Sunk cost (0\$, do not consider)
 - Salvage value (linear decline over life or customized)
 - Decommissioning cost
- Annualize everything (ECC)

OpenDSS + DER-VET Tool Interaction

Inputs to DER-VET:

- From User
 - Customer load profile (8760)
 - Customer tariff
- From OpenDSS*
 - Operational envelope (min/max power at POI OR min/max battery power, depending on if load is already included in OpenDSS model)
- Outputs from DER-VET
 - Optimal battery size
 - Customer electric bill savings
- * https://www.epri.com/pages/sa/opendss

Validation through Case Studies

Case List	Goals (WHY)	Objectives (WHAT)	DER Options & Features (WHICH)	Outcome (HOW)
Case Study #1	Customer DER portfolio sized for Bill Reduction and customer resilience Check if the DER portfolio sized for bill reduction can also provide backup and improve customer resilience	Primary objective: Customer bill reduction. DER sized for this service Secondary objective: Evaluate reliability in terms of load coverage	Blue sky day: ES+PV (retail services) Outage days: ES+PV+DG (optional) User-defined critical load percentages to calculate reliability metrics	 Metrics: NPV comparisons (CBA), Payback period, Cost Normalization (e.g.: \$/kW of DER installed capacity), Avoided costs per service Critical load coverage comparisons (\$/kW-yr) Reliability performance and load coverage
Case Study #2	Energy storage-enabled microgrid designed with the similar or better reliability than the conventional diesel generator-based microgrid Check if net cost of operation is same/lesser than the conventional diesel generator-based microgrid	Primary objective: Reliability/Resilience Secondary objective: Customer bill reduction	Blue sky day: ES+PV (retail services) Outage days: ES+PV+DG User-defined Load coverage probability User-defined critical load percentages to calculate reliability metrics	 Metrics: Critical load coverage comparisons (\$/kW-yr) Reliability Performance based on targets and load coverage curve comparison NPV comparisons (CBA), Payback period, Cost Normalization (e.g.: \$/kW of DER installed capacity), Avoided costs per service
Case Study #3	Improve community resilience during crisis (hurricanes, wildfire, PSPS events) with community & customer PV and Storage assets	Primary objective: Community Resilience, Improve grid reliability Secondary objective: Market Participation	 Blue sky day: ES+PV (market services) Outage days: ES+PV User-defined outage durations User-defined critical load percentages to calculate reliability metrics 	 Metrics: Critical load coverage comparisons (\$/kW-yr) Reliability Performance based on targets and load coverage curve comparison NPV comparisons (CBA), Payback period, Cost Normalization (e.g.: \$/kW of DER installed capacity), Avoided costs per service

Validation through Case Studies (cont.)

Case List	Goals (WHY)	Objectives (WHAT)	DER Options & Features (WHICH)	Outcome (HOW)
Case Study #4	Customer DER + CHP portfolio sized for customer resilience + bill reduction	Primary objective: Customer bill reduction Secondary objective: Customer resilience	Blue sky day: Electric + Heating + Cooling CHP/CHP + other DER Outage days: CHP/CHP + other DER User-defined outage durations User-defined critical load percentages to calculate reliability metrics	 Metrics: NPV comparisons (CBA), Payback period, Cost Normalization (e.g.: \$/kW of DER installed capacity), Avoided costs per service Critical load coverage comparisons (\$/kW-yr) Reliability performance and load coverage
Case Study #5	Leverage EVs as a grid resource to maintain mobility and reliability	Primary objective: Customer Bill reduction. Secondary objective: Customer resilience	Blue sky day: ES+PV+EV (retail services) Outage days: ES+PV+EV User-defined outage durations User-defined critical load percentages to calculate reliability metrics	 Metrics: NPV comparisons (CBA), Payback period, Cost Normalization (e.g.: \$/kW of DER installed capacity), Avoided costs per service Critical load coverage comparisons (\$/kW-yr) Reliability performance and load coverage
Case Study #6	External Tool Integration: Assessing Non-Wires Solutions (NWS) impact on community feeder reliability. DER-VET integration with power flow tools (e.g. EPRI's OpenDSS)	Primary objective: Community feeder reliability improvements + capacity deferral (NWS) Secondary objective: Customer resilience	 Blue sky day: ES+PV (grid services) Outage days: ES + PV User-defined feeder reliability improvement targets User-defined customer outage durations User-defined critical load percentages to calculate reliability metrics 	 Metrics: Critical load coverage comparisons (\$/kW-yr) Reliability Performance based on targets and load coverage curve comparison NPV comparisons (CBA), Payback period, Cost Normalization (e.g.: \$/kW of DER installed capacity), Avoided costs per service

Transmission Solar + Energy Storage Case Study

Site-Specific Energy Storage Analysis Framework

Dx and Tx Assessment

- Develop enhanced Dx and Tx planning criteria, methods, and tools
- Characterize Dx and Tx needs and solutions
- Apply energy storage non-wires solutions (NWS) screening criteria and methods

Alternative Evaluation

- Design energy storage NWS solution including sizing, siting, controls, etc.
- Assess energy storage Dx impacts
- Evaluate stacked benefits, state of charge management, degradation, etc.

Economic Evaluation

- How do energy storage costs & value compare to conventional solutions?
- What are the operating costs of the system?
- What revenues might the added energy storage provide?

Example: LADWP Transmission Project

Application	Description	Status
Market Service Participation Energy Arbitrage Frequency Regulation Spinning Reserves Resource Adequacy	Buy low, sell high Rapidly inject and remove power Dispatch power Real power reserve	Project has been Contracted and in Execution
Long-term resource planning and operational reliability	Meet long-term reliability needs with both high renewables and storage penetration in and out of LA Basin	In-Progress

LADWP Transmission Projects

Application	Description	Status
Market Service Participation Energy Arbitrage Frequency Regulation Spinning Reserves Resource Adequacy	Buy low, sell high Rapidly inject and remove power Dispatch power Real power reserve	Project has been Contracted and in Execution
Long-term resource planning and operational reliability	Meet long-term reliability needs with both high renewables and storage penetration in and out of LA Basin	Concept Stage

35

LADWP Energy Storage Project #1

- Los Angeles Department of Water and Power (LADWP) was required to meet its California Senate Bill SB801 requirements
- The study considers a 100 MW, 4-hour battery energy storage system paired with a 200 MW solar PV facility to be procured through a Power Purchase Agreement (PPA) with a third-party developer who would be able to claim 30% Federal Investment Tax Credit incentive

LADWP Full Report: Integrating Energy Storage System with Photovoltaic Generation: Analysis within Los Angeles Department of Water and Power (LADWP) Service Territory to Meet SB801 Requirements at http://www.epri.com/abstracts/Pages/ProductAbstract.aspx?ProductId=00000003002013007

LADWP Case Results - Dispatch

Impact of grid charging constraints

DER-VET (and StorageVET) Optimized Dispatch Outputs

LADWP Case Results - CBA

 Several cases resulted in benefit-cost ratios greater than one for project starts years after 2022 as illustrated in the graph below

Microgrid Design for PSPS Events

Microgrid Design - DER-VET Modeling Assumptions

- Identify potential Public Safety Power Shutoff (PSPS) planned events and duration in California
 - A load profile is chosen from Aug-Dec time period with the highest net energy demand
 - Load cannot be shed
- Solar PV assumptions and limitations
 - Corresponding Solar irradiance profile
 - PV profile from TMY profile
 - PV can be curtailed
- Battery ES assumptions:
 - Initial SOC at the start of outage event is 100%
 - Battery round trip efficiency 91%
 - Hybrid solar plus storage installation co-located at the dc side

Candidate Critical Load Facilities

Critical Load Facility	Peak Load	Energy Requirement for 48h Outage (Without PV)
SCE – Feeder with 137 customers (98% commercial)	2.2 MW	68.6 MWh
LA – Hospital	1.4 MW	55.3 MWh
LA – Sec School	0.9 MW	24.97MWh

Load and PV Profile

LA – Sec School

LA - Hospital

Clear

676.740

07-28 03 07-28 06 07-28 09

07-28

6

07-27 18 07-27 21 07-28 00 18

Outage Length (hour)

07-2

07-2 6

2163 37 Load

2500

2000

(N) 1500 1000

500

0

90 60 12

07-27

8

SCE Feeder

Peak load – 0.9 MW 24hr load requirement – 13MWh 36hr load requirement – 18MWh 48hr load requirement – 25MWh Peak load – 1.4 MW 24hr load requirement – 28MWh 36hr load requirement – 43MWh 48hr load requirement – 55MWh Peak load – 2.16 MW 24hr load requirement – 35MWh 36hr load requirement – 48MWh 48hr load requirement – 76MWh

1.00

0.90

).90).80 0.70 0.60 0.50 0.40 0.30 0.20 0.20 0.20 0.20

0.00

-28

Microgrid Sizing Results

LA – Sec School

The energy storage and PV size corresponding to the knee point. Knee-point is a point where adding more PV does not affect the size of energy storage significantly.

SCE Feeder

Outage Length Variation – SCE case-study

Microgrid designs results for 24, 36 and 48h outage lengths

It is non-linear for high PV generation. The microgrid size depends on the load shape and PV generation coincidence

Microgrid Cost Summary

LA – Sec School

SCE Feeder

Min Cost of covering 24, 36 and 48hr outage – **12M\$, 16M\$ and 21.5M\$**

T&D Upgrade Deferral Case Study

Screening of Three Energy Storage Sites*

	Feeder 1	Feeder 2		Substation	
			Feeder 3	Feeder 4	Transformer (Feeding 3 & 4)
Overloaded Asset Necessitating Action	379A underground cable limit 8% Overloaded few hours/year	379A underground cable limit 6% Overloaded few hours/year	400A switch 12% Overloaded few hours/year (Next limit: 491A Voltage Regulator)	295A overhead cable limit Not yet overloaded	15.45 MVA limit Not yet overloaded, could be soon
Traditional Upgrade Option and Cost	Reconfigure some load to adjacent feeder, also reconductoring underground portion of feeder head cables to double ampacity. \$1.1 Million	Extend adjacent feeder and transfer some loads off of feeder \$0.1 Million	Build a new substation \$5.9 Million		
Projected Load Growth Rate	0.5 [%] /year	0.5 [%] /year	1 [%] /year		
Additional Data Provided by For Screening	 2017 hourly feeder head currents (for each phase), total MW, and total MVAR 2008-2029 recorded/predicted yearly feeder head peak load values 	 2017 hourly feeder head currents (for each phase), total MW, and total MVAR 2008-2029 recorded/predicted yearly feeder head peak load values 	 2017 hourly feeder head currents (for each phase) 2004-2029 recorded/predicted yearly feeder head peak load values 		

* The three sites were identified by distribution planners.

Screening Analysis Results - Choosing a Feeder for Detailed Analysis

				Substation		
	Feeder 1	Feeder 2	Feeder 3	Feeder 4	Transformer (Feeding 3 & 4)	
Energy Storage Requirements in Year 10 to Defer Capacity Investment	2 MW 4.72 MWh 2.4 Hour	1.47 MW 9.07 MWh 6.1 Hours	0.17 MW 0.17 MWh 1 Hour	0 MW 0 MWh 0 Hours	1.22 MW 3.4 MWh 2.8 Hours	Total storage required for
Distribution Upgrade Cost	Reconfigure feeder and loads \$1.1 Million	Reconfigure feeder and loads \$0.1 Million		Build new substatio \$5.9 Million	•	
Estimate for Storage Installed Cost* (assuming \$900/kWh**)	~\$4.2 Million	~\$8.1 Million		~\$3.1 Million	Winner!	

Substation transformer bank is the best candidate for detailed energy storage analysis due to the relatively high cost of the new substation transformer bank as compared to the cost of the energy storage asset.

* The energy storage cost estimates here do not include the value of storage secondary services, which will improve the overall economics of the storage project. The valuation of stacked secondary services is a part of the detailed storage analysis.

** Source: Energy Storage Cost Analysis: Executive Summary of 2017 Methods and Results, EPRI, Palo Alto, CA: 2017. EPRI 3002012046.

Screening Analysis Results – Storage Requirements

Capacity Limits (Before Any Distribution Upgrades)

- Feeder 3 operational capacity is originally limited to 400A by a substation switch. This switch will be upgraded increasing the feeder capacity to 491 Amps limited by feederhead voltage regulator
- Substation transformer bank capacity is 15,451 kVA

Storage Capacity Requirement in Year 10

- 1.22 MW / 3.4 MWh (2.8 hrs)
- The capacity is needed seldom leaving room for stacked secondary services

Stacked secondary services: Storage is not utilized for its primary asset deferral objective for much of the year. What additional services could it provide when available?

Storage Capacity Requirements

^{*} No inverter oversizing was considered for volt/var or other secondary services.

Screening Analysis Results – Storage Scenarios

Consider two energy storage scenarios for stacked-service and costbenefit analysis

- Scenarios 1: Install full energy storage capacity (Year 10 requirement 1.22 MW / 3.4 MWh / 2.8 hrs) in Year 1
 - Advantage: More storage capacity immediately available for secondary services
 - Disadvantage: High initial capital investment
- Scenario 2: Increase energy storage capacity modularly as the capacity need increases
 - Advantages:
 - Take advantage of lower storage costs in the future
 - Defer some of the initial investment
 - Hedge against uncertainty: If the projected load growth does not materialize, no unnecessary energy storage investments are made
 - Disadvantage: Limited storage capacity initially available for secondary services
- Several energy storage vendors, e.g., Tesla Powerpack, offer such modular solutions
 - For example, assuming 50kW 4 hour modular storage packs (e.g., Tesla Powerpack), 30 Powerpacks would be required in Year 10 (total capacity of 1.5 MVA – 6 MWh – 4 hours)*

* Less capacity may be needed if the load grows slower than anticipated.

	Added Battery (Inverter)	Total Installed Capacity	Total Installed Powerpacks (Inverters)
2018	0.5 MW	0.5 MW – 4 Hours	10 Powerpacks
	(0.5 MVA)	(0.5 MVA)	(1 Inverter)
2021	0.5 MW	1 MW – 4 Hours	20 Powerpacks
	(0.5 MVA)	(1 MVA)	(2 Inverters)
2024	0.5 MW	1.5 MW – 4 Hours	30 Powerpacks
	(0.5 MVA)	(1.5 MVA)	(3 Inverters)

Secondary Non-Distribution Services Overview

	Scenario B	Scenario C		
Energy Storage Size	1.5 MW, 3.75 MWh	3 X (0.5 MW, 1.25 MWh)		
Year(s) Deployed	2018	2018, 2021, 2024		
Analysis Timeframe	10 years	10 years		
ES RT Efficiency	85%	85%		

Service	Price
Day Ahead Energy Price	Local LMPs from 2017
Day Ahead Ancillary Services	Market Clearing Prices from 2017
Services Modeled	Day Ahead Energy Arbitrage Spinning & Non Spinning Reserves

Storage Activity on an Unconstrained Day (2019)

Energy storage activity driven by price on an unconstrained day

Storage Activity on a Constrained Day (2026)

Constraints

ESS Activity

Energy storage activity driven by distribution requirements on a constrained day

Storage Activity Unconstrained vs. Constrained Day

www.epri.com

Cost-Benefit Analysis: Financial Parameters Assumed

Cost Assumptions for Measures Considered

2. Storage All-in Storage System Cost	2017 (\$2017)	2022 E (\$2017)	Annual Esc. Rate	Annual Esc. Rate incl. inflation	Useful Life
4 hrs	\$2,070/kW	\$1,360/kW	-8.06%		
2.5 hrs*	\$1,473/kW	\$980/kW	-7.83%	-5.34%	10 yrs
2 hrs	\$1,274/kW	\$853/kW	-7.71%		
O&M**	\$10/kW-yr	\$11/kW-yr		2.07%	N/A

*Costs linearly interpolated from 2hrs and 4hrs configurations

**O&M costs are highly project specific and can vary widely, from \$8 to \$37/kW-yr.

All-in Storage System Cost (\$)	2017 (\$2017)	2022 E (\$2017)	Annual Esc. Rate incl. inflation	Useful Life	Calculated Economic Carrying Cost (ECC)*
1.5 MW / 2.5 Hrs	2,209,500	1,469,625	-5.34%	10yrs	19.54%
0.5 MW / 2.5 Hrs	736,500	489,875	-5.34%	10yrs	19.54%
O&M**	\$10/kW-yr	\$11/kW-yr	2.70%	N/A	N/A

*ECC calculated assuming financial parameters shown above

**O&M costs are highly project specific and can vary widely, from \$8 to \$37/kW-yr.

Time Horizon

New Substation

*Note that years on this slide refers to *in-service* years, while years on previous slide refers to *construction* years.

CBA Results

Scenario / \$2017	A (avoided)	CAPEX	OPEX	MKT REV	NPV
B-	3,460,026	3,062,132	115,429	352,466	634,931
B - market only	3,460,026	3,062,132	115,429	352,528	634,993
C-	3,460,026	1,845,991	77,209	228,716	1,765,542
C- market only	3,460,026	1,845,991	77,209	228,776	1,765,602

- 1. All scenarios considered yield positive economic returns. This is true even when not considering market revenues.
- 2. Scenario C –three smaller ES installed sequentially– yields better returns than a larger ES.
 - <u>Note</u>: For ES #2 and #3, some costs are still to be recovered after 2028
- 3. Operation constraints for primary service only marginally reduce market revenues.

Long Duration Energy Storage Case Study

Long Duration Energy Storage (LDES) DER-VET Analysis

Туре	Technology	Acronym	TRL
	Concrete Thermal Energy Storage	CTES	4
	Electro-Thermal Energy Storage	ETES	3
	Gravitational Energy Storage	GES	6
	Liquid Air Energy Storage	LAES	6
	Lithium-Ion Battery Storage	Li-lon	9

Modeling Inputs

- Round-Trip Efficiency (RTE)
- Capital Costs
- Operating Costs
- Startup Energy

(Total AC power generated / total AC energy consumed)
(Anticipated costs for power [\$/kW] & energy [\$/kWh])
(Dwell energy losses, maintenance, and augmentation)
(Energy consumed during startup)

DER-VET Base Case and Sensitivities

Base

 All technologies were run using the original pricing curves in each region for the 6-, 8-, and 10-hour duration cases (Li-ion batteries were also run at their prevalent 4-hour duration case)

Sensitivities

- Capital costs were adjusted +10% / -30%
- Energy prices were modified (mod) from their original (orig)
- RTE was adjusted +/- 5% points

18 Cases per Technology per Hours of Duration

Pricing	Orig								
RTE	Base	Base	Base	High	High	High	Low	Low	Low
Costs	Base	High	Low	Base	High	Low	Base	High	Low
Pricing	Mod								
RTE	Base	Base	Base	High	High	High	Low	Low	Base
Costs	Base	High	Low	Base	High	Low	Base	High	Base

Significant number of DER-VET cases: 1728 total

www.epri.com

Energy Pricing Sensitivity

- Original
 - Predicted based on expected energy mix and demand profiles
- Modified
 - Original prices amplified 2x
 from overall annual average
 - When negative values occur, these are reset to zero
 - All pricing data offset to achieve equivalent average values vs. original average prices

DER-VET Results: Tech Duration vs. Revenue Requirements

Revenue Requirement (\$/kW-yr)

Duration,	LDES	LDES	LDES	LDES	
hours	Α	В	С	D	Li-ion
4					-23
6	-93	-39	-104	-70	38
8	-91	-36	-86	-60	103
10	-88	-34	-67	-50	170

Technology cost forecast is a key driver for LDES analysis

LDES Deployment Driven by Future Macro-Economic Scenarios

STORAGE DURATION

Military Installation Microgrids

PROBLEM STATEMENT (WHY?)

- 1. Design an ES enabled microgrid with the similar or better **reliability** than the traditional DG based baseline microgrid
- 2. Check if net cost of operation of the ES enabled microgrid is same/lesser than the traditional diesel generator-based baseline microgrid

SITES ANALYZED

Sites Considered:

- A. Naval Base Ventura County
- B. March ARB
- C. Holloman Air Force Base (AFB)

D. Fort Bliss

E. NAS Corpus Christi

Installations Modeled are a Cross-Section of:

- Geographies
- Energy Market Areas
- Sizes
- Mission Activities
- Military Services

INPUT DATA FOR THE ANALYSIS

Three Types of Variables

Military Installation Conditions

- Critical Load Size & Shape
 - Solar and DG Assets
 - Other Conditions

Secondary Services

- Utility Retail Tariff Structure
 - Wholesale Market Prices
- Regulatory Rules in different service territories

Energy Storage Technologies

- Lithium-Ion

EXAMPLE MILITARY INSTALLATION CONDITONS

- Peak load: 14 MW
- Peak critical load: 4 MW
- 7 diesel generators available:
 - 750 kW each
 - 50,000 gallons of diesel available
- PV Nameplate rating: 830 kW

www.epri.com

- Hourly PV irradiance resolution

Secondary Services

BILL REDUCTION

- Energy charge reduction
- Demand charge reduction
- Demand response

WHOLESALE MARKET

- Energy arbitrage
- Frequency regulation
- Spinning reserves and nonspinning reserves

STORAGE TECHNOLOGY CONSIDERED

- Li-lon battery (Mature technology)
- Round Trip Efficiency: 91%
- Battery Replaced every 7 years over the 20-year analysis horizon
- CAPEX cost derived from EPRI's 2019 cost study*
- O&M Cost: \$10/kW-yr

*Energy Storage Cost Assessments. Solar Plus Storage Cost Assessment and Design Considerations: Executive Summary

Also considered Flow Battery technology, but that data was proprietary

BASELINE ANANLYSIS – PERFORMANCE METRICS

Reliability Analysis - Critical load coverage probability as a function of outage length (hours)

Load Coverage Probability

Baseline Microgrid configuration: DG – 7x750kW+ PV – 830 kW

Duration	Probability (%)
24 hours	99.46%
168 hours	85.94%

Cost Benefit Analysis

Cost Benefit Analysis Components	Metrics
Baseline NPV (20 Yr) (Cost)(Millions of \$)	\$108.95
Baseline Critical Load Coverage (\$/kW-yr)	\$135.50

Energy Storage Enabled Microgrid Design

Final Microgrid Design Output

	Baseline Microgrid Configuration	Li-ion ES Microgrid Configuration
Power and Duration	-	4375kW 4hr
SOC Reservation (Reliability)	-	5.16%
# Gensets	7 x 750 kW	5 x 750kW
Secondary Services	-	Bill reduction

Note:

- 1. Baseline and ES-enable design included PV
- 2. The final microgrid design with ES replaced two generators from the baseline microgrid

Microgrid - Reliability Performance

Duration	Probability (%)	
Duration	Baseline	Li-Ion ES
24 hours	99.46%	99.85%
168 hours	85.94%	96.6%

Both the designed microgrid has better reliability performance than the baseline microgrid

Li-Ion Storage Microgrid – Economic Performance

Cost Benefit Analysis Components	
Battery Size	4375 kW, 4 hr
CAPEX Cost (\$/kWh)	\$445/kWh
O&M Cost (\$/kW-yr)	\$10/kW-year
Baseline NPV (20 Yr) (Cost)(Millions of \$)	\$108.95
Investment Case NPV (20 Yr) (Cost)(Millions of \$)	\$105.27
% NPV Improvement	3.38%
Baseline Critical Load Coverage (\$/kW-yr)	\$135.50
Storage-Enabled Critical Load Coverage (\$/kW-yr)	\$85.20
% Critical Coverage Improvement	37.12%
# Generators Retired	2
Profitable Secondary Service	Retail Bill Reduction
Total Sec. Service Revenue (\$)	\$8,785,963
Avoided Costs due to Demand Charge Reduction	\$4,850,519
Avoided Costs due to Energy Cost Reduction	\$3,935,444

Economic Metric Li-Ion Microgrid – All Sites

77

Microgrid Design for PSPS Events (Study for SCE)

Introduction

Problems (Why?)

- Customer interruption during prolonged outages (PSPS, scheduled maintenance)
- California State push to meet Clean Energy Targets and GHG Emission Reduction targets

Solution

 Solar plus Storage Microgrids to build Resilient Communities

Design (How?)

- Microgrid Design Solar plus storage using DER-VET to maximize resiliency and cost-efficiency
- *DER-VET is a CEC funded open-source software tool

*PSPS: Public Safety Power Shutoff

79

Solar plus Storage Microgrid Design Overview

DER Technology Mix

- Solar PV
- Energy Storage

DER Sizing & Operation

- **Primary Objective**: Customer Reliability/Resiliency for planned outage
- Secondary Objective: Maximize economic benefits from Wholesale market participation

Cost Benefit Consideration

- DER ownership model: FTM utility owned
- Lifetime of assets and replacement
- Analysis time horizon
- CBA Metrics: Total project NPV

Financials Summary

Microgrid Candidate Selection Scenario

- 1. High frequency PSPS circuits (based on 2018 and 2019 data)
- 2. Candidate that can safely remain energized during PSPS events
- 3. Screen out candidate with planned mitigation solutions
- 4. Prioritize candidates based on key criteria (low income, no. of PSPS, critical and/or disadvantaged customers, etc.)

Study conducted on one of SCE's feeders:

- Peak demand approx. = 2.2 MW
- No. of customers = 137 customers
- Customer type = 98% commercial and industrial circuit

Microgrid Design - DER-VET Input

- Identify potential planned outages and duration
 - Load profile to identify microgrid demand
- Solar PV assumptions and limitations
 - Solar irradiance profile and dependability percentages (0, 27 %, 42%, 100%)
 - PV limited by land availability Size varied between 0.5 MW -30 MW (carport, ground mount)
 - PV can be curtailed
- Battery ES assumptions:
 - Initial SOC at the start of outage event is 90%
 - Battery round trip efficiency 91%
 - Hybrid solar plus storage installation co-located at the dc side
 - No duration constraint

24 Hr Load Profile

82

24 Hour Outage DER Sizing

Optimal Microgrid Design – 24-hour Outage

ES Power Rating

ES Energy Rating

PV Curtailment

Min power rating for the storage = Peak Load (~2.2 MW)

Energy rating of the battery decreases with increase in installed PV capacity until the knee point PV curtailment happens at and after the knee point

PV curtail % = [Sum of curtailed PV energy at each time step / Sum of total PV energy at each time step]

PV Curtailment and the 'Knee Point'

- There is direct correlation between PV curtailment and Knee point
 - PV curtailment happens at and after the knee point

ES Energy Rating

PV Curtailment

Knee point for 42% PV case is 9MW PV curtail % = [Sum of curtailed PV energy at each time step / Sum of total PV energy at each time step]

Outage Simulation – Solar (9 MW) + Storage (2.2MW/11.5MWh)

Min ES size: Power= 2.2 MW Energy= 11.5 MWh

- SOC is not 100%, so there is no PV curtailment in this case
- Excess PV generation is charged in ES and so there we can see an increase in battery SOC %

© 2021 Electric Power Research Institute, Inc. All rights reserved.

Cost-Benefit Analysis - Assumptions

Benefit Services and Modeling Approach

Benefit Services	Modeling Assumption
Reliability*: 100% Load coverage for Planned Outages (3 events X 24 hrs)	Reserve 100% Energy Storage Capacity for 24 hrs
Wholesale Market Participation	Co-optimized forEnergy arbitrageFrequency Regulation

*Reliability: Value of service calculated based on customer minutes of interruption (CMI) and customer type (residential, commercial, industrial)

EPRI Financial Assumptions

Design Parameters	Value
Discount Rate	10%
Inflation Rate	2%
Economic Carrying Cost (PV)	10.64%
Economic Carrying Cost (ES)	15.11%*

*Considers Federal Income Tax Credit (ITC) for solar plus storage assets

For illustration propose only (not in scale)

48 Hour Outage DER Sizing

Min ES Size – Allowing PV Curtail – 48 hr Outage

ES Power Rating

ES Energy Rating

ES Duration

Min power rating for the storage is about 2 MW (~peak load). Similar to the 24 hr outage case

Energy rating follows the same trend as in prev case. The knee points are slightly different from the previous case ES duration trend is also similar to 24 hour outage

Min ES Size – Allowing PV Curtail – 48 hr Outage

PV curtail % = [Sum of curtailed PV energy at each time step / Sum of total PV energy at each time step]

Timeseries Plots for 42% PV Case's Knee Point – 10 MW PV

Microgrid Design Summary

- Solar plus storage microgrid design using DER-VET
 - Ensured **100% load coverage** during outage events and planned maintenance
 - Demonstrated ability to determine a minimum size system to meet 24 hour microgrid demand
 - Detailed cost-benefit analysis to estimate the net present value of the designed microgrid
- SCE issued RFP in Q1 for potential microgrids deployment in 2020
 - Decided to **not pursue** the proposed projects based on **costs, technology**
 - Following the Q1 RFP, SCE started reevaluating possibilities, applying lessons learned, and developed site selection & evaluation criteria for potential 2021/22 microgrid deployment

SCE's EPIC Front-of-The-Meter (FTM) Microgrid Projects

- Control and Protection for Microgrids and Virtual Power Plants
 - Development of hardware-in-the-loop (HIL) microgrid test-bed and demonstration of control & protection schemes
 - Platform to design & integrate microgrids into SCE planning & operational processes
- Smart City Demonstration
 - Partner with City to deploy FTM microgrid supporting critical facilities
 - **Customer** and **utility-owned DERs** to operate FTM microgrid (100% inverter-based)
 - Interface between Microgrid Control System and Grid Management System for improved visibility and operation (island and resynchronize)
- Service and Distribution Centers of the Future
 - Integrated electric fleet center field demonstration with managed EV charging and DERs
 - Use of a FTM energy storage to support load management and resiliency

StorageVET® Background

StorageVET[®] in Action

StorageVET[®] is a free, open source energy storage project valuation tool informing decision-makers across the electric grid

www.epri.com

Get started at storagevet.com

Together...Shaping the Future of Energy®