

StorageVET 2.0 Task Force

ESIC Working Group 1: Grid Services and Analysis

Miles Evans | EPRI Ram Ravikumar | EPRI Halley Nathwani | EPRI Giovanni Damato | WG1 Chair, EPRI

December 5, 2019

 Image: Second system
 Image: Second system

 Image: Second

Antitrust Guidelines

Antitrust laws apply to EPRI, its members, funders, advisors, licensees, contractors, and vendors. Violations can lead to civil and criminal liability.

DO NOT DISCUSS...

- Pricing, production capacity, or cost information which is not publicly available;
- Sales territories, market shares, future product offerings;
- Confidential market strategies or business plans;
- Other competitively sensitive information;
- Advise or try to influence others on their business decisions (except to the extent that they are already public);
- Complaints or disparaging remarks concerning customers/suppliers/competitors.

DO NOT AGREE...

- To discriminate against or refuse to deal with a supplier (boycott);
- To only do business on certain terms and conditions;
- To set (or fix) prices;
- To divide markets or technologies;
- To allocate customers/suppliers/territories;
- To suppress a technology;
- To the use, promotion or endorsement of particular vendors, contractors, consultants or products.

Webcast and Recording Notification

The webcast is being recorded along with all Q&A. Your participation provides consent to that recording.

As a result, please make sure your phone is on mute throughout the webcast unless speaking. Do not place your phone on hold.

StorageVET 2.0 Task Force

ESIC Working Group 1: Grid Services and Analysis

Miles Evans | EPRI Halley Nathwani | EPRI Giovanni Damato | WG1 Chair, EPRI Ram Ravikumar | EPRI

December 5, 2019

 Image: Second system
 Image: Second system

 Image: Second

Agenda

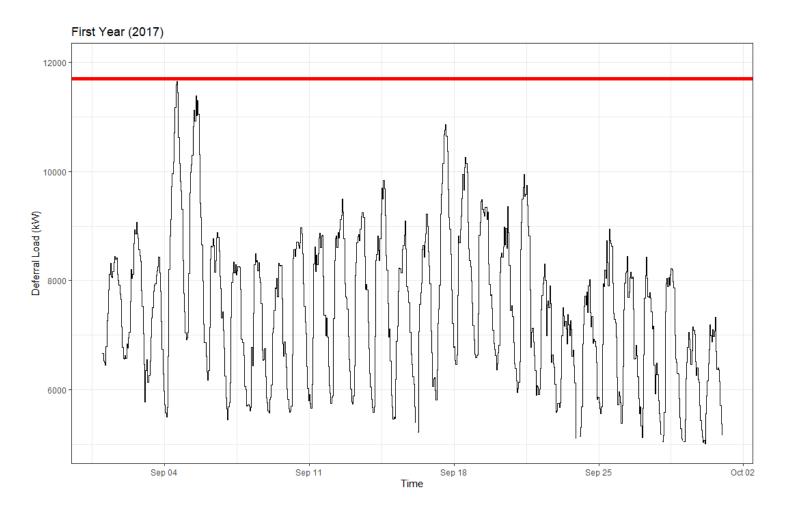
- StorageVET Update 1.0.1
- StorageVET 2.0 Reference Case #1 Deferral
- DER-VET Validation
- Documentation

StorageVET Update 1.0.1

Version 1.0.1

- New version available for download
- Bug fixes
 - Deferral service
 - Assorted changes
- Usability changes
 - Slightly reorganized model parameters
 - More coherent default data/parameters

StorageVET 2.0 Deferral Reference Case

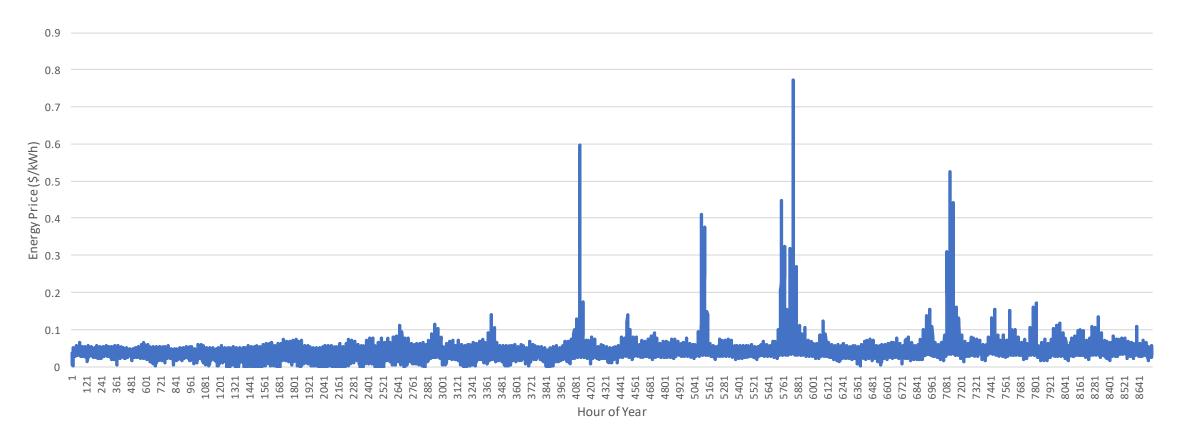


Case Summary – Primary Service

Load growth-based N-0 upgrade deferral case

~12 MW load (hourly)

2%/year load growth



Case Summary - Secondary Service

Energy Time Shift

www.epri.com

- Southern California energy prices from 2017

Case Summary – Battery System

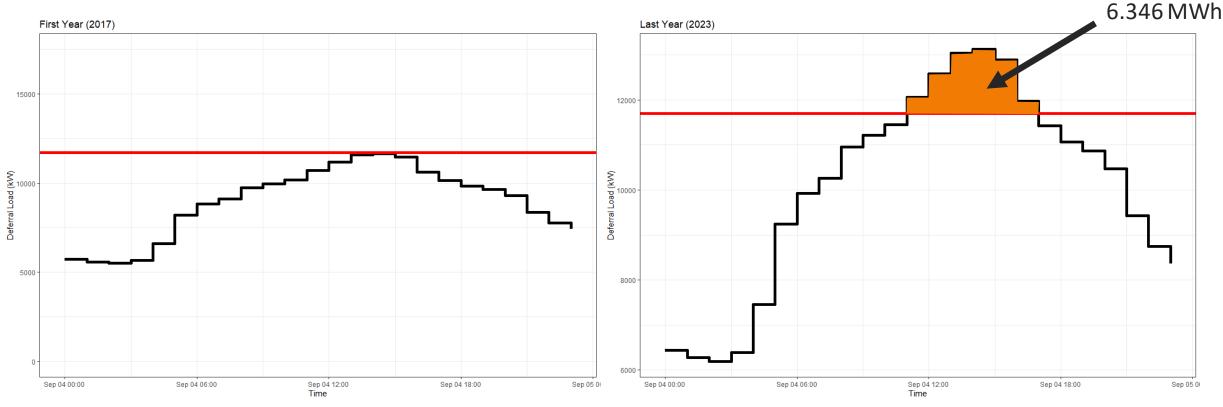
- Power Capacity: 2 MW
- Energy Capacity: 8 MWh
- Installed Cost: \$1600/kW
- O&M Costs: \$10/kW-yr
- 1 cycle/day limit

StorageVET 2.0 Setup

Tag 🖵	Кеу	Value
Battery	name	Deferral Battery
Battery	ccost	0
Battery	ccost_kw	0
Battery	ccost_kwh	0
Battery	startup	0
Battery	fixedOM	0
Battery	OMexpenses	0
Battery	ch_max_rated	2000
Battery	dis max rated	2000
Battery	ch_min_rated	0
Battery	dis min rated	
Battery	ene_max_rated	8000
Battery	ulsoc	100
Battery	llsoc	0
Battery	rte	85
Battery	sdr	0
Battery	install_date	1/1/2017
Battery	soc_target	50
Battery	yearly_degrade	0
Battery	incl_cycle_degrade	0
Battery	p_start_ch	0
Battery	p_start_dis	0
Battery	daily_cycle_limit	1
Battery	hp	0

StorageVET 2.0 Setup

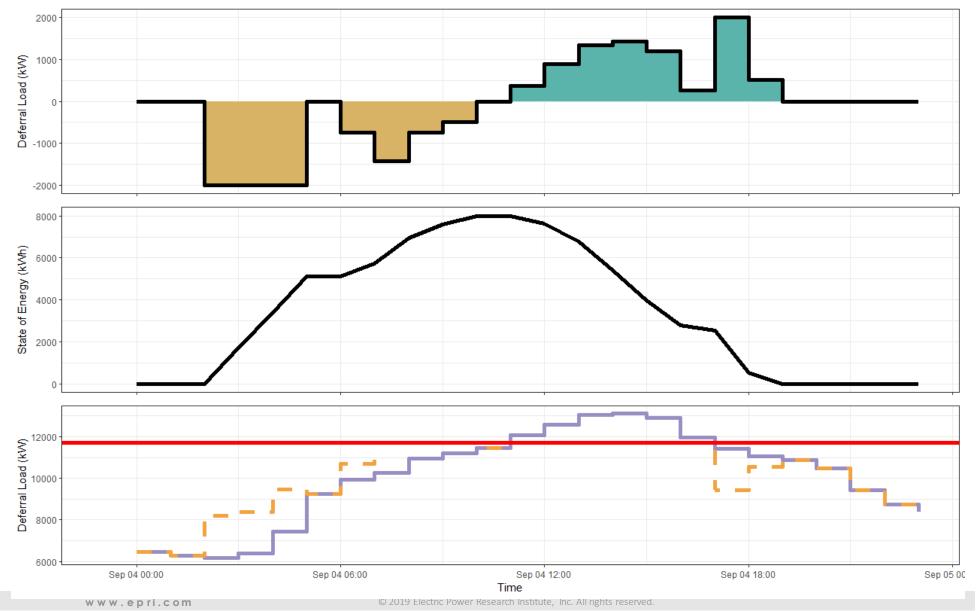
www.epri.com


Energy price required but no other services included

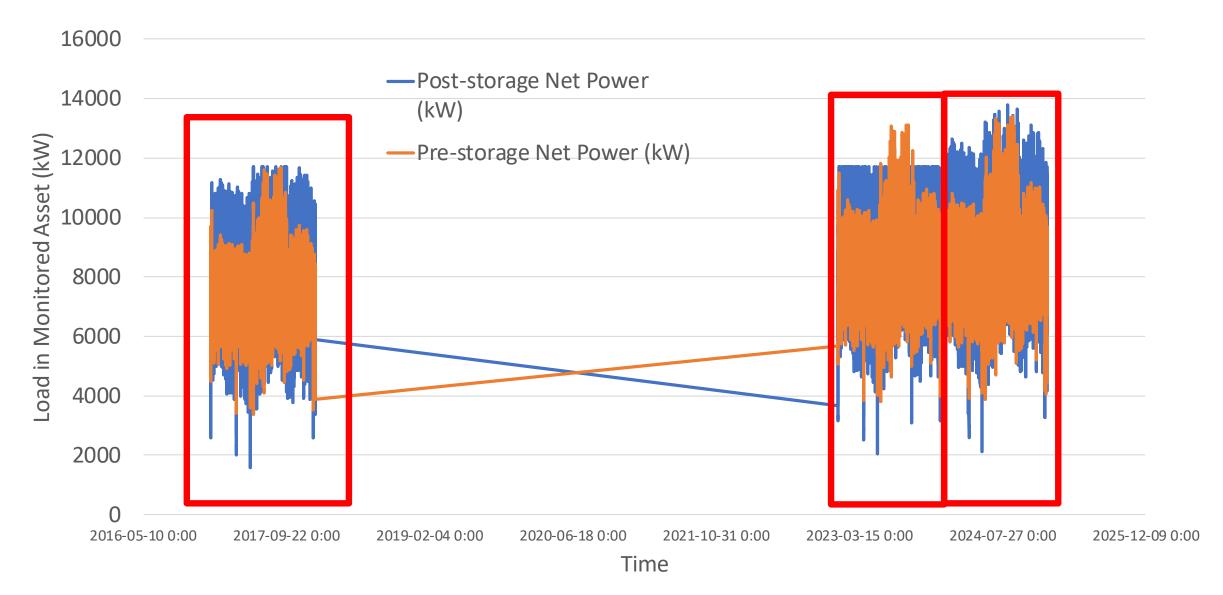
Tag 🖵	Key 🔽	Value 🔽
DA	growth	0
Deferral	planned_load_limit	11700
Deferral	reverse_power_flow_limit	-15000
Deferral	growth	2
Deferral	price	0

Deferral Results

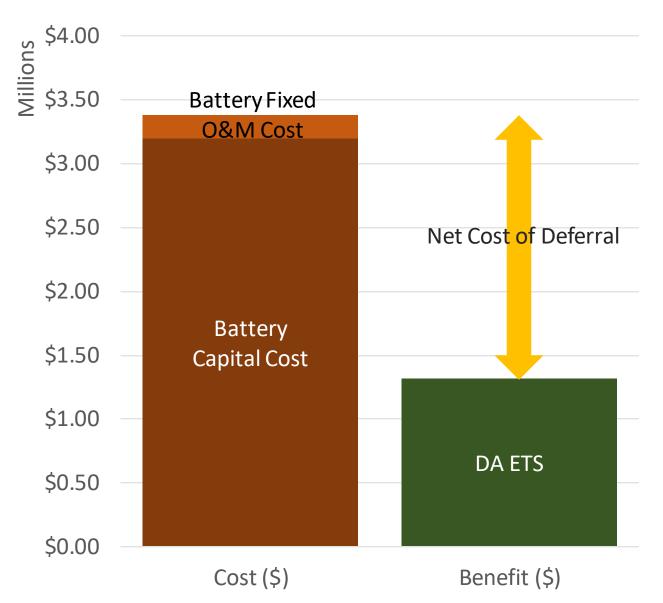
- Energy-limiting day not necessarily power-limiting day
 - In this case, we are energy-limited
- 2 MW, 4hr battery can defer upgrade from 2018 to 2024 1.425 MW,


Storage System Requirements Over Time

www.epri.com



Operational Results


Plotting Directly in Results Folder

Financial Results

- Benefits do not overcome battery installed costs
 - Does not include deferral benefit
- Net cost of deferral = \$2.07
 Million
 - Needs to be overcome by benefit of deferring upgrade by 6 years
 - Or, avoided economic carrying cost could be counted as a benefit

DER-VET Validation

Problem Statement

 Optimize the size and cost of a microgrid with long-duration storage technologies that offers a desired level of reliability for grid outages lasting between 0 and 168 hours relative to the provided baseline microgrid

 Analyze the cost-effectiveness of the optimally designed microgrid, to determine if any of the storage technologies under consideration yields a positive business case

Estimate the expected economic benefits from stacking services from grid services

Baseline & Investment Cases Overview

- Location: Southern CA (SCE Service Territory)
- Baseline Microgrid: A diesel generator based microgrid system designed to serve a certain critical load onsite with a specific amount of reliability

 Battery enabled Microgrid (Investment Case): A microgrid with a combination of DER (diesel generator+ battery) that could potentially help us retire a few generators without compromising on the reliability of the baseline microgrid

Identifying Primary and Secondary objectives

 Primary Objective: To serve the critical load at the site with a minimum reliability

 Secondary Objective: To explore the additional possibility of offering "stacked benefits" either at the distribution level or customer level

Identifying Costs and Benefits of Operating Microgrids

Baseline Microgrid

Cost	Benefit
CAPEX and OPEX cost of operating the generators (N)	None
Cost of serving the total load of the customer (utility bill)	

Investment Case Microgrid

Cost	Benefit
CAPEX and OPEX cost of operating the generators (N-1)	Offer Wholesale Market services
Cost of serving the total load of the customer (utility bill)	
CAPEX and OPEX cost of operating the battery	

Modeling Methodology (Investment Case)

Step 1: Reliability Analysis Identify minimum battery size to satisfy baseline microgrid reliability

Step 2: Secondary Benefit Analysis Evaluate the value of battery while offering wholesale market services

Step 3: Cost Benefit Analysis

Perform a final CBA to understand if owning and operating the microgrid makes economic sense

Documentation

Additional Documentation

- Youtube videos/reference cases
- Inputs descriptions
- Outputs descriptions
- As-built formulation
- New-user-friendly user guide

Regularly Scheduled Meetings

Next meeting – Thursday January 9, 2020 11:00 am PT

Together...Shaping the Future of Electricity

