

StorageVET 2.0 Task Force

ESIC Working Group 1: Grid Services and Analysis

Miles Evans | EPRI Halley Nathwani | EPRI Giovanni Damato | EPRI

March 5, 2020

 Image: Market interview
 Image: Market interview

 Image: Market interview
 Image: Market interview

 Image: Market interview
 Image: Market interview

 Image: Market interview
 Image: Market interview

Antitrust Guidelines

Antitrust laws apply to EPRI, its members, funders, advisors, licensees, contractors, and vendors. Violations can lead to civil and criminal liability.

DO NOT DISCUSS...

- Pricing, production capacity, or cost information which is not publicly available;
- Sales territories, market shares, future product offerings;
- Confidential market strategies or business plans;
- Other competitively sensitive information;
- Advise or try to influence others on their business decisions (except to the extent that they are already public);
- Complaints or disparaging remarks concerning customers/suppliers/competitors.

DO NOT AGREE...

- To discriminate against or refuse to deal with a supplier (boycott);
- To only do business on certain terms and conditions;
- To set (or fix) prices;
- To divide markets or technologies;
- To allocate customers/suppliers/territories;
- To suppress a technology;
- To the use, promotion or endorsement of particular vendors, contractors, consultants or products.

Webcast and Recording Notification

The webcast is being recorded along with all Q&A. Your participation provides consent to that recording.

As a result, please make sure your phone is on mute throughout the webcast unless speaking. Do not place your phone on hold.

StorageVET 2.0 Task Force

ESIC Working Group 1: Grid Services and Analysis

Miles Evans | EPRI Halley Nathwani | EPRI Giovanni Damato | EPRI

March 5, 2020

 Image: Market interview
 Image: Market interview

 Image: Market interview
 Image: Market interview

 Image: Market interview
 Image: Market interview

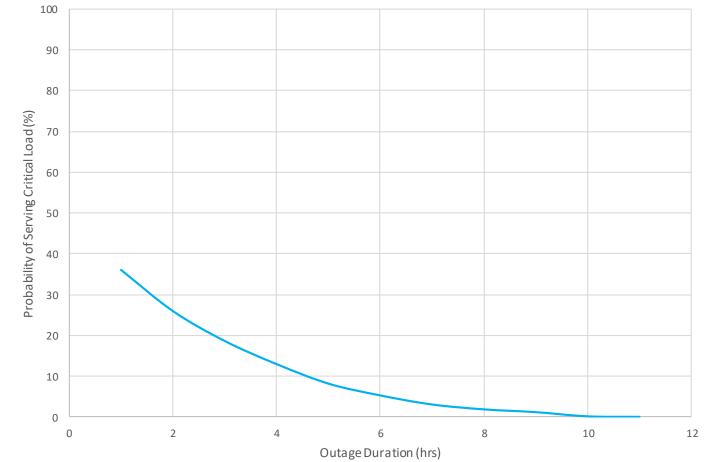
 Image: Market interview
 Image: Market interview

Agenda

- Last Month: Post-Facto Reliability
- DER-VET Public Safety Power Shutoff Use Case

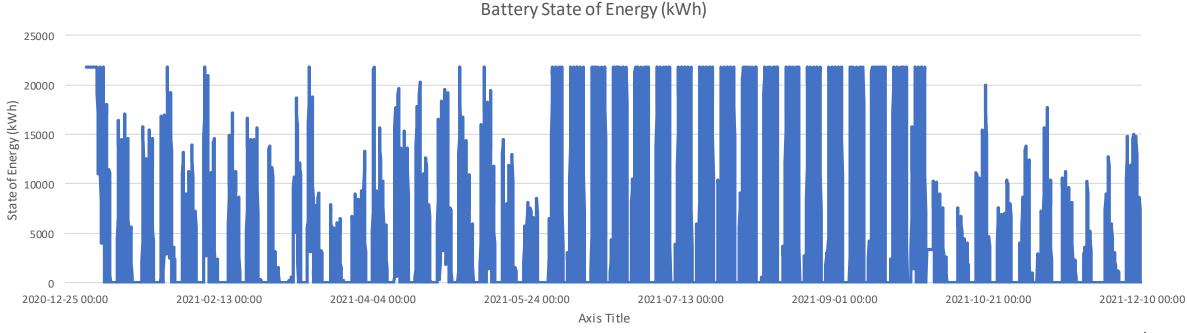
Post-Facto Reliability Review

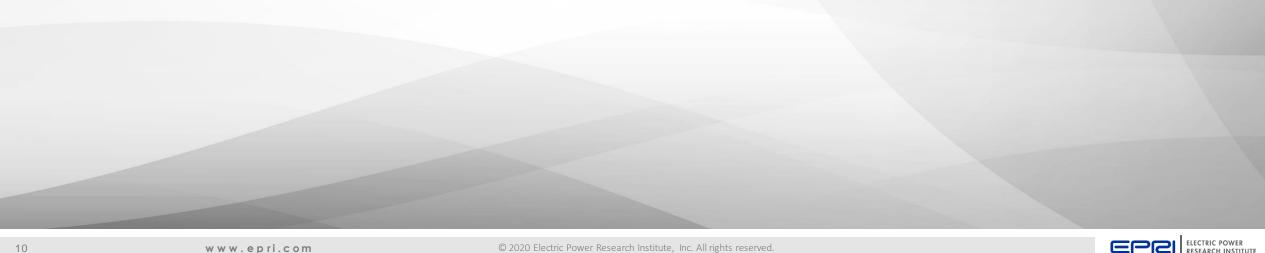
Review Post Facto Reliability Process


Optimize Size for Demand Charge Reduction Calculate Outage Coverage Probability

Conclusions - Reliability

- Battery is unlikely to cover a random outage.
 - Size not constrained or optimized for reliability
 - Operated to minimize SOC most of the time


Critical Load Coverage Probability Curve


Conclusions – Should be Operated Differently for Reliability

- Next time
 - Set a minimum SOC
 - Optimize for reliability
 - Penalize low SOC

Optimize for Reliability: PSPS Adaptation

Public Safety Power Shutoffs

- Long-duration power shutoffs when fire risk is high
 - Can last several days
 - 24-48 hours is typical
- DER-VET Input: Critical loads need to be covered for all 48-hr outages

Optimize for Reliability Approach

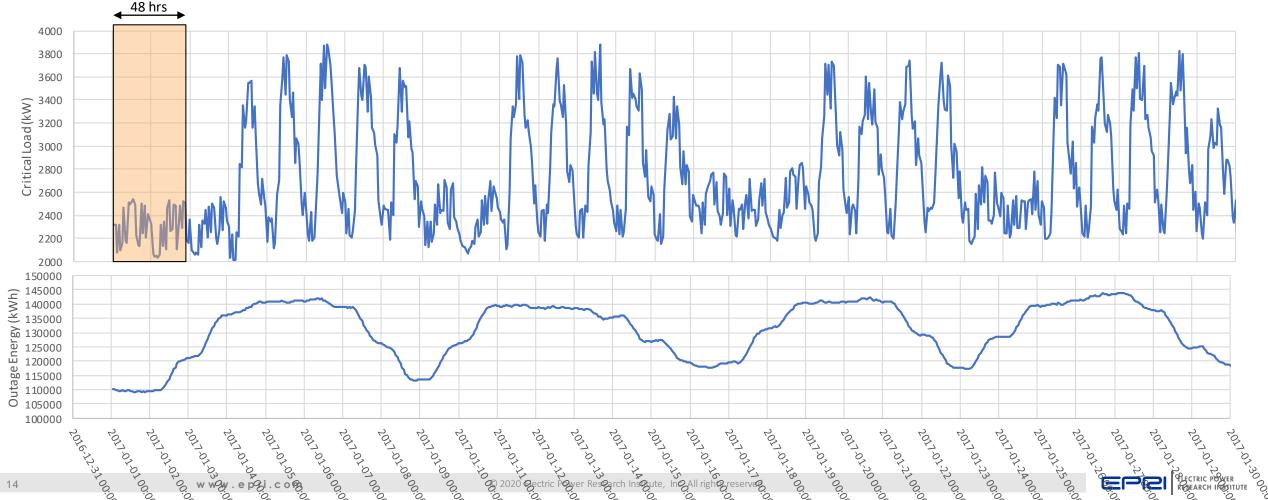
If demand charges are high, potential for more storage than reliability requires

www.epri.com

Use Case Description (Review)

- Large military base in California wants to build a battery microgrid
 - Back up critical loads
 - Reduce electricity costs
- ~15 MW load
- ~4 MW Critical Load
- \$8.77/kW Demand Charges
- TOD Energy Charges

www.epri.com



Reliability Optimization

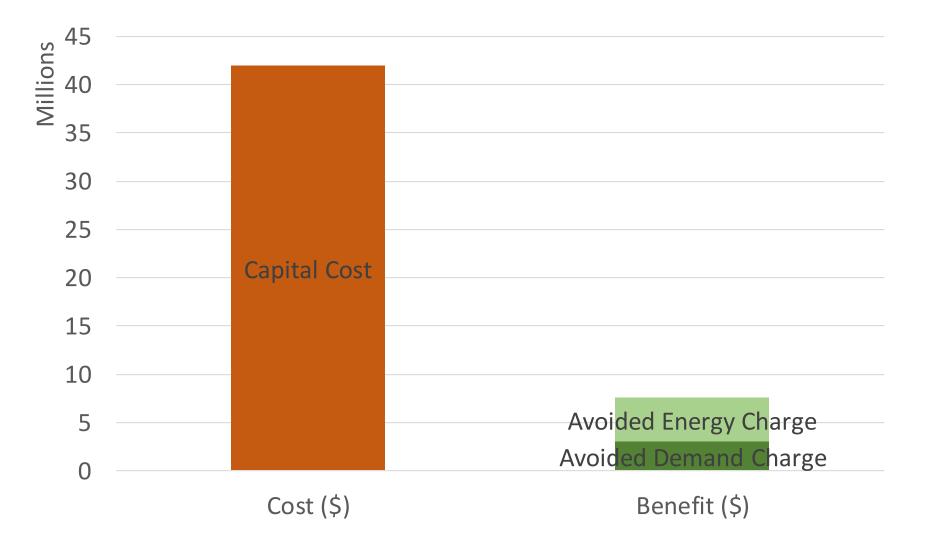
Minimize DER costs while meeting reliability objectives

Our objective: 100% coverage of all 48-hr outages

Results

- Minimum Power Capacity Required to meet reliability objective:
 4 MW
- Minimum Energy Capacity Required to meet reliability objective: 155 MWh (almost 39hr duration)

 Compare to the economically-optimal results of 3.6 MW, 22 MWh (6 hr)


Economic Results

- Demand Charge Reduction of \$288,226 per year
- Energy Charge Reduction of \$429,744 per year
- Compare to the economically-optimal results of: Demand Charge Reduction: \$315,548 per year
 Energy Charge Reduction: \$474,998

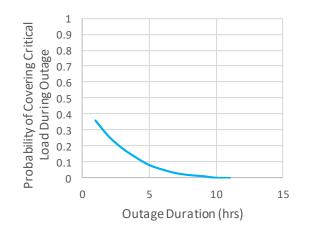
- Electric bill savings are lower despite larger storage system size due to SOC restrictions to maintain readiness.
 - In PSPS cases, these restrictions could be removed most months!

Cost-Benefit

Compare to Economically-Optimal Results



View Detailed Financials Results...

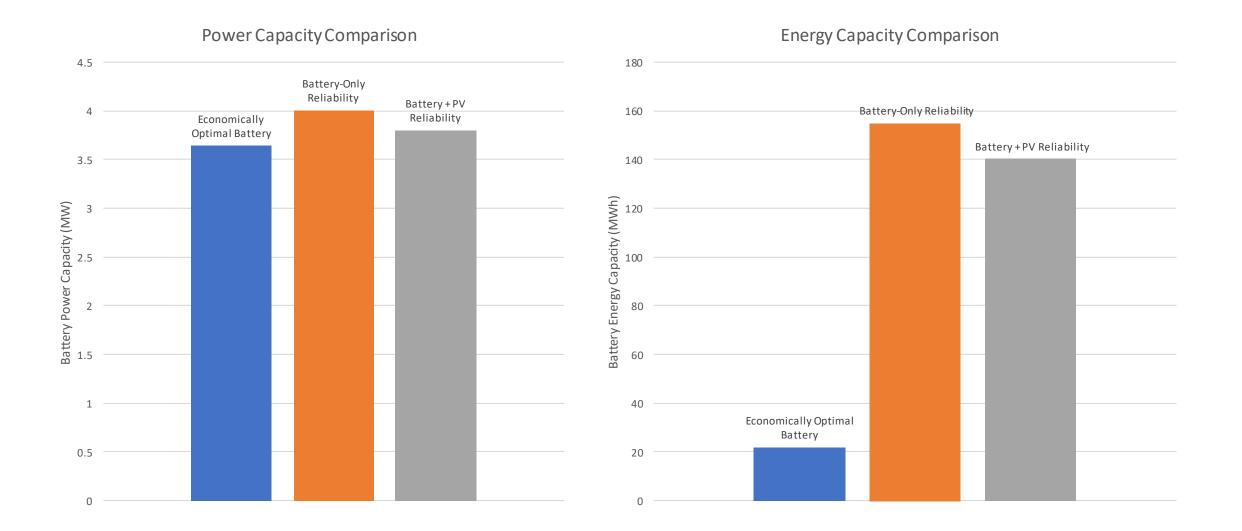


Reliability Results Comparison

Optimize for Reliability

Optimize for Economics

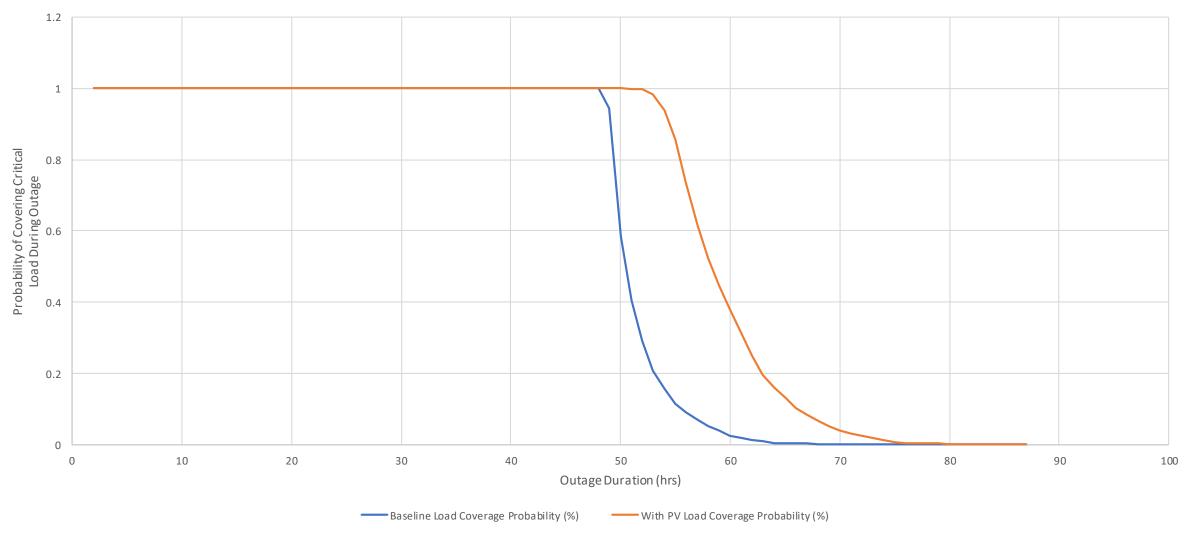
What about distributed generation?



Include PV in Size Optimization

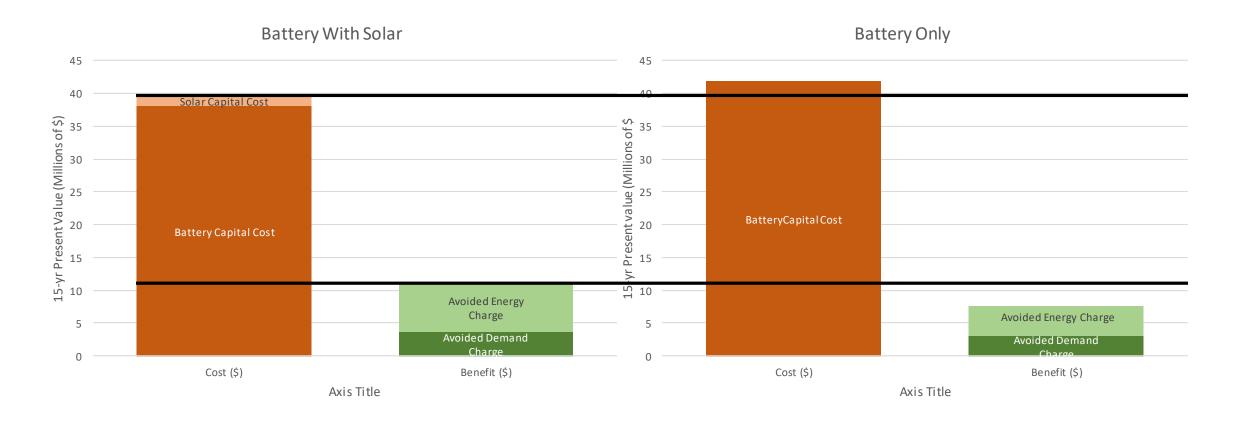
- PV Assumptions
 - 1 MWAC
 - \$1500/kW
- Battery Cost Assumption = \$800/kW + \$250/kWh
- PV Will:
 - Reduce the size of battery required to cover 48-hr outages
 - Storage can charge from PV when PV > critical load during outages
 - Offset some of the electricity bill

Optimal Battery Size Comparison



www.epri.com

New Reliability Outcomes


Critical Load Coverage Probability Curve

Change in Economic Results

Higher Benefits and Lower Cost With Solar

Possible Future Work

Could extend results to PV + Battery + Genset

- …or any other DER
- Optimize PV size too if footprint restrictions, etc. not in play
- Scenario analysis with different combinations of PV, Storage, Generator sizes

Realistic storage duration!

- Constrain duration to a maximum of 8 hrs, for example
- Redo analysis with optimal energy capacity and a larger power capacity

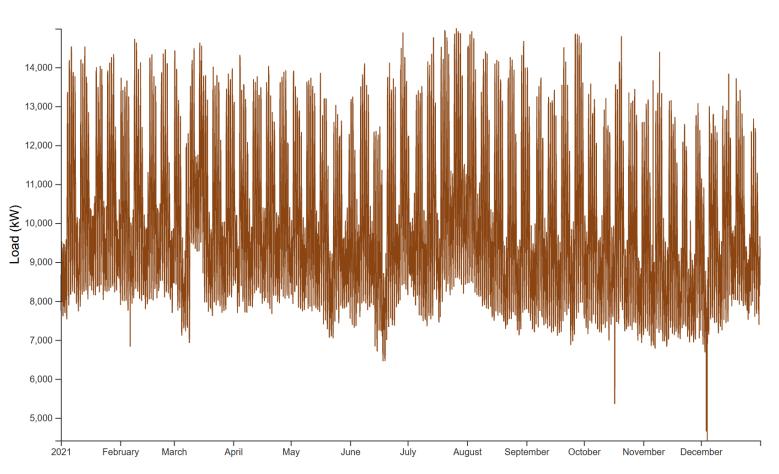
Note on Perspective

- This case is customer-centric but can be adapted to a utilityowned microgrid scenario.
- Avoided costs can be included instead of electric bill reduction as the economic objective
- Or, reliability can be the only objective

Next Meeting

Regularly-Scheduled Meetings

- Next Meeting Thursday April 2, 11:00 am Pacific Time
 - DER-VET Beta



Together...Shaping the Future of Electricity

Use Case Description

- Large military base in California wants to build a battery microgrid
 - Back up critical loads
 - Reduce electricity costs
- ~15 MW load
- ~4 MW Critical Load
- \$8.77/kW
 Demand Charges
- TOD Energy Charges

Analysis Objectives

- What is the economic optimum battery size?
 - Power capacity
 - Energy capacity
- Given the optimum size/operation, how much critical load could the battery cover?
 - Depends on state of charge and size

Define General Project Parameters

DER-VET Projects -	III Results Catalogs -		mevans@epri.com Log off
Project Configuration •	Project Configuration	on	
Technology Specifications			
Battery Storage (1)	Project Name	CEC In-Person Demo	Name of the project, used to differentiate this case from any other the user has run before.
Services	Start Year	2021 🛤	
Site Information			
	Analysis Window		
Financial Inputs		• User-defined analysis horizon	Defines when/how to end CBA analysis.
External Incentives	Analysis Horizon Mode Oser-defined analysis horizon Auto-calculate analysis horizon Use carrying cost	Dennes when/how to end GDA analysis.	
Retail Tariff			
	Analysis Horizon	20 years	
Scenario Analysis		The number of years the analysis will go for. The analysis will not consider equipment lifetime or a else when determining the number of years to run for.	
Summary			

Grid Domain and Ownership Model

Technology Specifications			
	Data Year	2021 ÷	
Battery Storage (1)		* Note: Analysis for a scenario wh	ere the data year comes before the start year has not yet been implemented.
		-	the same or after the project start year.
Services		DER-VET uses exactly one year of data. If the year this data comes from is different from the year the optimization is run against, it will be escalated from the data year to the optimization year.	
Site Information			
	Grid Domain	 Customer 	Which grid domain the project will be connected to. This
Financial Inputs		 Distribution 	limits which services are available.
		○ Transmission	smission
External Incentives		 Generation 	
Retail Tariff			
	Ownership	CustomerUtility	Who owns the assets.
Scenario Analysis		o 3rd Party	

Physical Location for Tariff and Solar Data

Physical Location:	Address for this project
	Enter the address for this
	Latitude: 34.280492
	Longitude: -119.294520
	Q Locate Current Add
	Map Satellit
	Main St
	Figueroa Street Ma
	E Santa Clara St Google
	Physical Location:

his project.

ddress

Add a Battery System

DER-VET	Projects -	I All Results	Catalogs -
Project Configuration		Technolog	y Specs
Technology Specifications			
Battery Storage (1)		Select a techr	nology to add:
Services			
Site Information		Solar I	PV
Financial Inputs		Battery St	torage
External Incentives		Internal Combus	stion Engine
Retail Tariff			

DER-VET Projects -	I All Results Catalogs -	mevans@epri.com Log
Project Configuration	Technology Specs:	: Battery Storage
Technology Specifications		
Battery Storage (1)	Name	Battery
Services	Energy Capacity Sizing	• Have DER-VET size the Energy Capacity • Known size
Site Information	Power Capacity Sizing	• Have DER-VET size the Power Capacity • Known size
Financial Inputs	Roundtrip Efficiency	91.0 %
External Incentives Retail Tariff		What is the AC roundtrip efficiency of the storage system? Only this single number is considered - no variable efficiency is modeled.
Scenario Analysis	Target SOC	100.0 %
Summary		What state of charge should the battery storage system return to at the end of each optimization window?

Self-Discharge Rate

%/hour

What is the AC roundtrip efficiency of the storage system? Only this single number is considered - no variable efficiency is modeled.

Limit Daily Cycling

○ Yes ● No

0.0

Constrain the battery storage system's daily discharge energy. When selected, this input limits the amount of discharge energy a battery can do in any 24-hr period to a maximum of its rated energy capacity * daily cycle limit.

Include Housekeeping Calculations

○ Yes ● No

"Include Housekeeping Power" – Apply a constant AC power consumption that does not discharge the battery directly. This is usually associated with HVAC requirements and keeping all equipment on."

Include startup cost in the dispatch optimization?

○ Yes ● No

Cost Function

Capital Cost	0 \$
	What is the capital cost for the storage system?
Capital Cost per kW	800 \$/kW
	What is the capital cost per kW for the storage discharge power capacity?
Capital Cost per kWh	250 \$/kWh
	What is the capital cost per kW for the storage energy capacity?
Fixed O&M Costs	0 \$/kW-year
	What is the cost of fixed operations and maintenance for the battery storage system?
End of Life Expenses (\$)	0
	How much will it cost to decommission the battery at its end of life? This cost is applied at the end of life of the battery system in nominal dollars.

DER-VET	Projects -	II Results	Catalogs -	mevans@epri.com	Lo
Project Configuration		Services			
Technology Specifications					
Battery Storage (1)		Where do e	nergy prices come from?		
		• Retail tariff, P	PA, or other fixed contract (define energy price structure)		
Services	•	Will the project be	e reducing energy charges on a retail electricity bill?		
Site Information					
Financial Inputs		Customer S	ervices		
External Incentives		□ Reliability/R	esilience		
Retail Tariff			of hours the site must be capable of covering a grid outage for. DER-VET will size and operate t ges of this duration.	he DERs to guarantee	
Scenario Analysis					
		Backup Pow	/er		
Summary			mount of energy capability in case of an outage. Unlike the reliability service, this will not impact ot depend on the load.	DER sizing and the energ	ју

Retail Demand Charge Reduction

Will the project be reducing demand charges on a retail electricity bill?

Wholesale Services

There are no wholesale services available because your project does not include a battery or because there are technologies that are not explicitly sized.

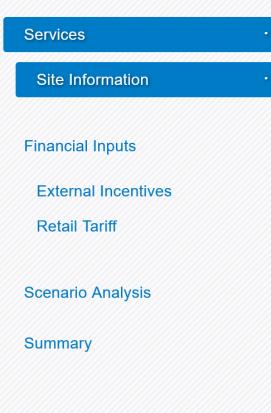
Save and Continue

KESEAKGII INSTITUT

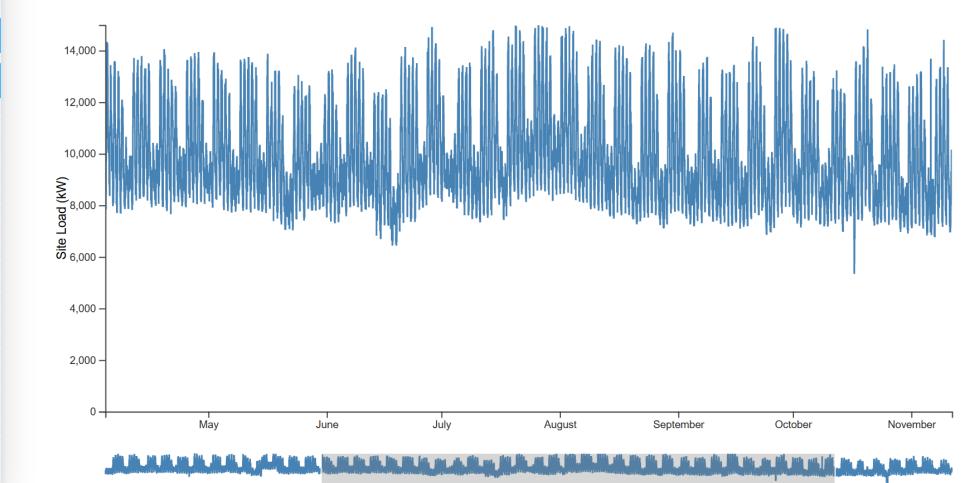
* Note: The Backup Power service has not yet been implemented. You must select at least one objective that is not backup power.

Other

You cannot define custom storage system settings because your project does not include a battery that is explicitly sized.


DER-VET	Projects -	I All Results	Catalogs -	mevans@epri.com
Project Configuration		Services: S	ite Information	
Technology Specifications				
Battery Storage (1)		Prevent powe	er import from the grid (self-generation only)	
		Will the project be r	required to island and ride through an outage of a specified duration?	
Services	•	Brovent news	ar export to the grid (colf concumption only)	
Site Information	•	-	er export to the grid (self-consumption only)	
Financial Inputs		Site load data has	s already been uploaded for this project. Do you want to use the existing data?	
External Incentives		⊛ Yes ⊃ No, ເ	upload new data	
Retail Tariff				
Conneria Analysia		<< Back		Save and Continue
Scenario Analysis				Save and Continue
Summary				

Project Configuration


Technology Specifications

Battery Storage (1)

Services: Site Load

Please take a moment to review the Site Load data for your project. Click the **Back** button below to upload different Site Load data, or click **Next** to continue using the below Site Load data.

Project Configuration

Financial Inputs

Inflation Rate

Technology Specifications

Battery Storage (1)

Services

Site Information

Financial Inputs

External Incentives

Retail Tariff

Scenario Analysis

Summary

Discount Rate (for discounted cash flow	
analysis)	

6

What is the discount rate to be used in the financial analysis? (Note: in the future, we will build calculators for this based on loan terms, return on equity, etc.)

2.2 %

What is the inflation rate to be used in the financial analysis?

Save and Continue

RESEARCH INSTITUTE

<< Back

C Edit

Lexport Tariff

OpenEl Tariff

🛅 Remove All

<u> </u>Remove

<u> Remove</u>

Remove

\overline m Remove

🛅 Remove

Retail Tariff Project Configuration 1 Import Tariff Build a retail tariff definition by: entering the billing periods one at a time; or by **Technology Specifications** importing a tariff file from an export file; or by importing a tariff from OpenEI. Battery Storage (1) Rate Table Energy Heatmap **Demand Heatmap** Services Site Information **Period Coverage Day of Week** Name Value 0 indicates that the period applies to \$0.0676 🗹 Edit January - May Weekdays **Financial Inputs** 1 weekends 12:00 AM - 08:00 AM (8 hours) **External Incentives Retail Tariff** 🖍 Edit 1 indicates that the period applies to January - May \$0.0779 Weekdays 2 weekdays 08:00 AM - 09:00 PM (13 hours) Scenario Analysis 🗹 Edit 3 January - May Weekdays \$0.0676 09:00 PM - 12:00 AM Summary (3 hours) C Edit January - May Weekends \$0.0676 4 12:00 AM - 12:00 AM (24 hours)

5 June - September Weekdays

\$0.062 Energy

Charge

Energy

Energy

Energy

Energy

Weekdays

Technology Specifications

Battery Storage (1)

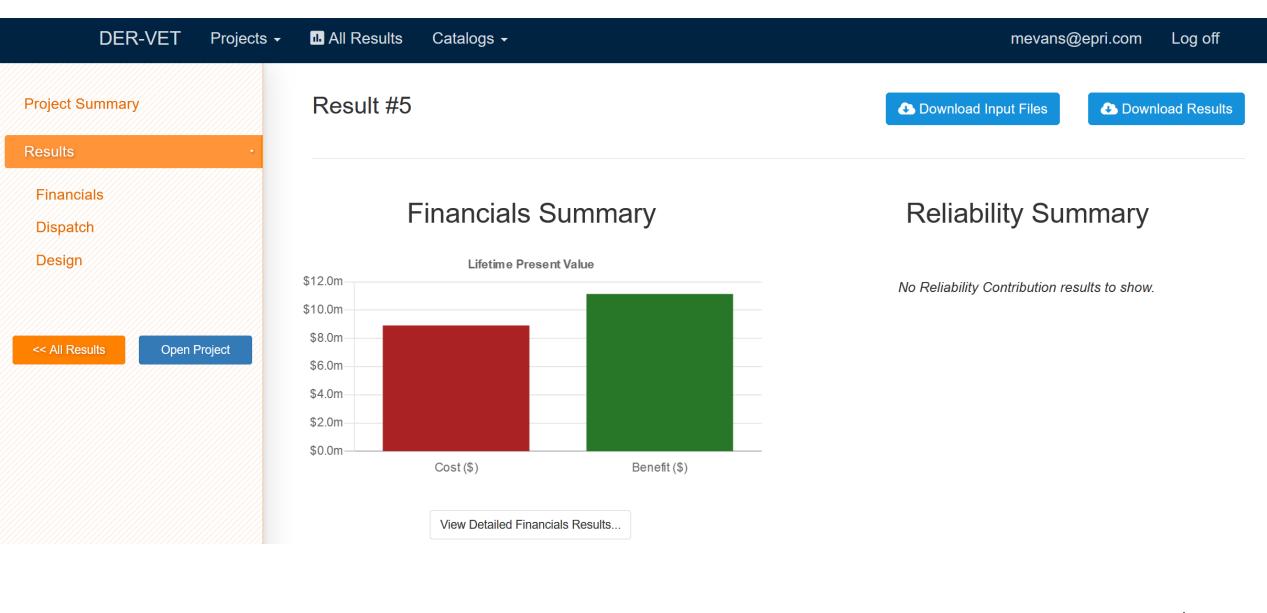
Services

Site Information

Financial Inputs											

External Incentives

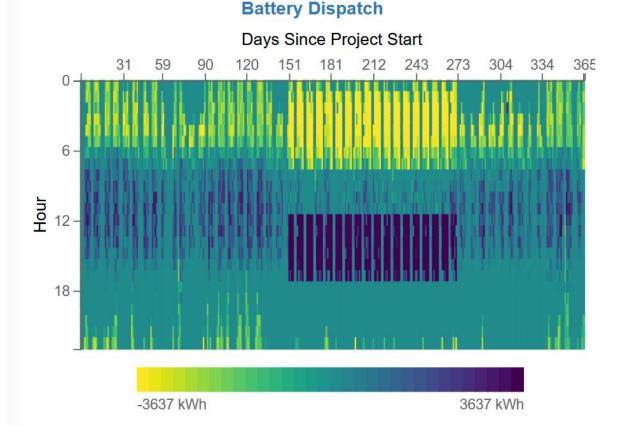
Retail Tariff

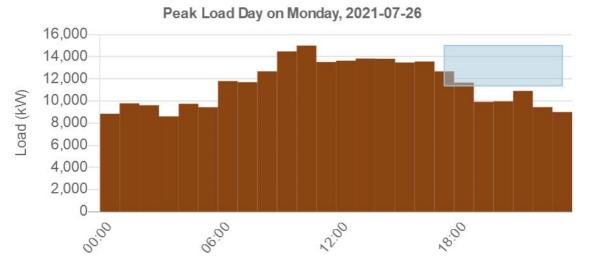

Scenario Analysis

Summary

Month	00	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16	17	18	19	20	21	22	23
January	2	2	2	2	2	2	2	2	3	3	3	3	3	3	3	3	3	3	3	3	3	2	2	2
February	2	2	2	2	2	2	2	2	3	3	3	3	3	3	3	3	3	3	3	3	3	2	2	2
March	2	2	2	2	2	2	2	2	3	3	3	3	3	3	3	3	3	3	3	3	3	2	2	2
April	2	2	2	2	2	2	2	2	3	3	3	3	3	3	3	3	3	3	3	3	3	2	2	2
Мау	2	2	2	2	2	2	2	2	3	3	3	3	3	3	3	3	3	3	3	3	3	2	2	2
June	1	1	1	1	1	1	1	1	4	4	4	4	5	5	5	5	5	5	4	4	4	4	4	1
July	1	1	1	1	1	1	1	1	4	4	4	4	5	5	5	5	5	5	4	4	4	4	4	1
August	1	1	1	1	1	1	1	1	4	4	4	4	5	5	5	5	5	5	4	4	4	4	4	1
September	1	1	1	1	1	1	1	1	4	4	4	4	5	5	5	5	5	5	4	4	4	4	4	1
October	2	2	2	2	2	2	2	2	3	3	3	3	3	3	3	3	3	3	3	3	3	2	2	2
November	2	2	2	2	2	2	2	2	3	3	3	3	3	3	3	3	3	3	3	3	3	2	2	2
December	2	2	2	2	2	2	2	2	3	3	3	3	3	3	3	3	3	3	3	3	3	2	2	2

Т

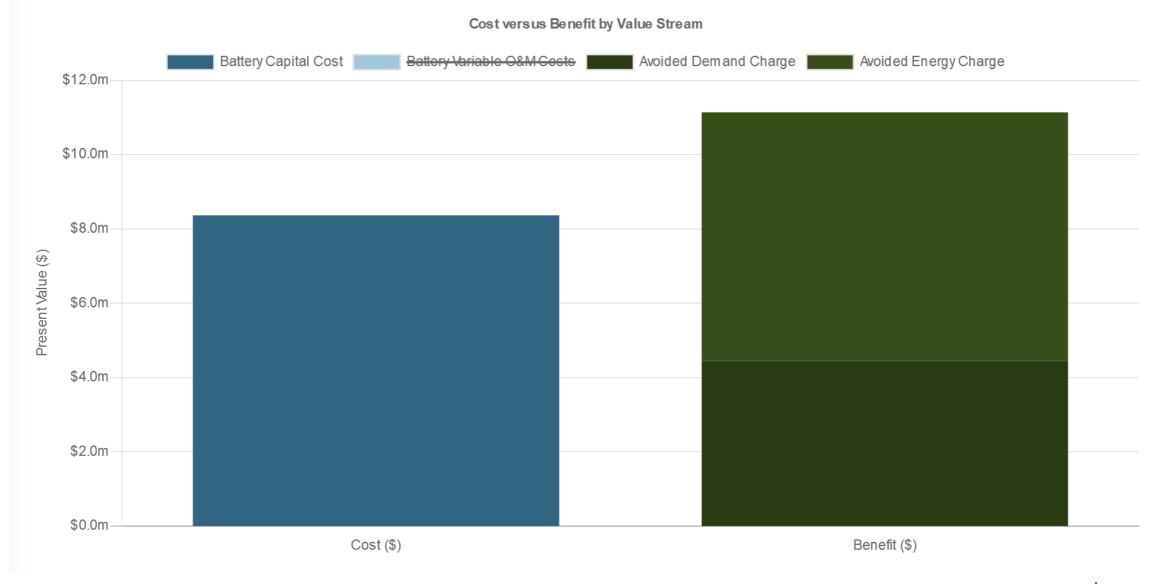

Results Summary Page



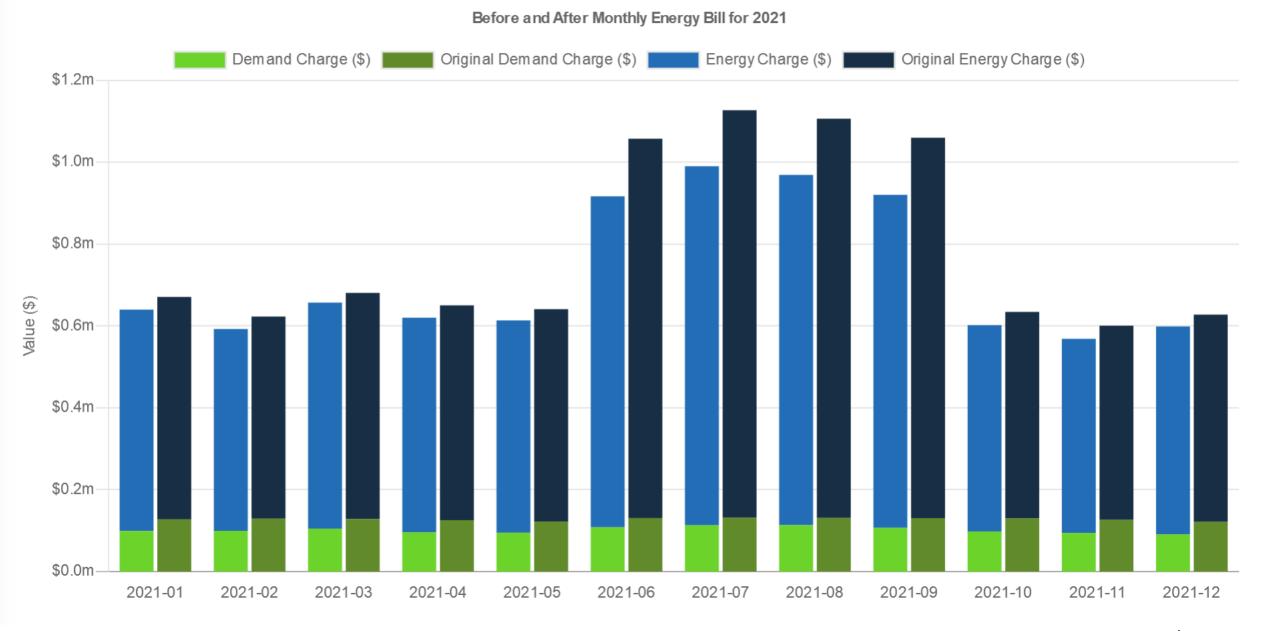
Results Summary Page (Cont)

Dispatch Summary

Design Summary

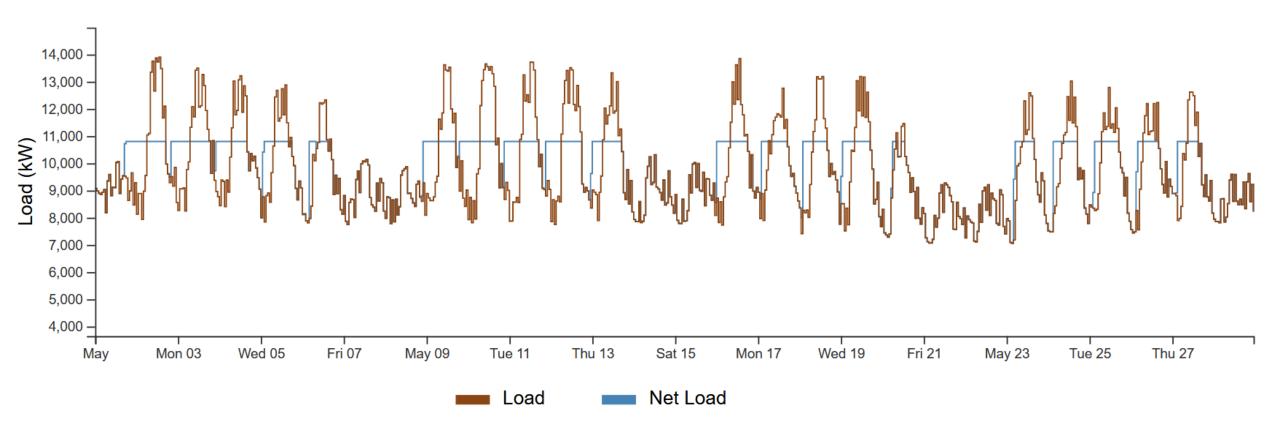


Battery (length is the duration and the height is the capacity)


View Detailed Design Results...

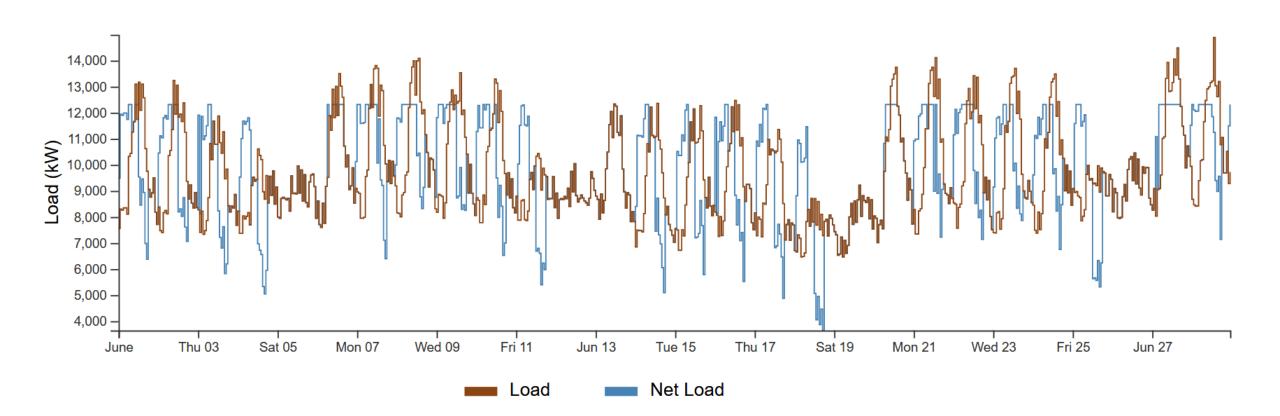
Financial Results

www.epri.com

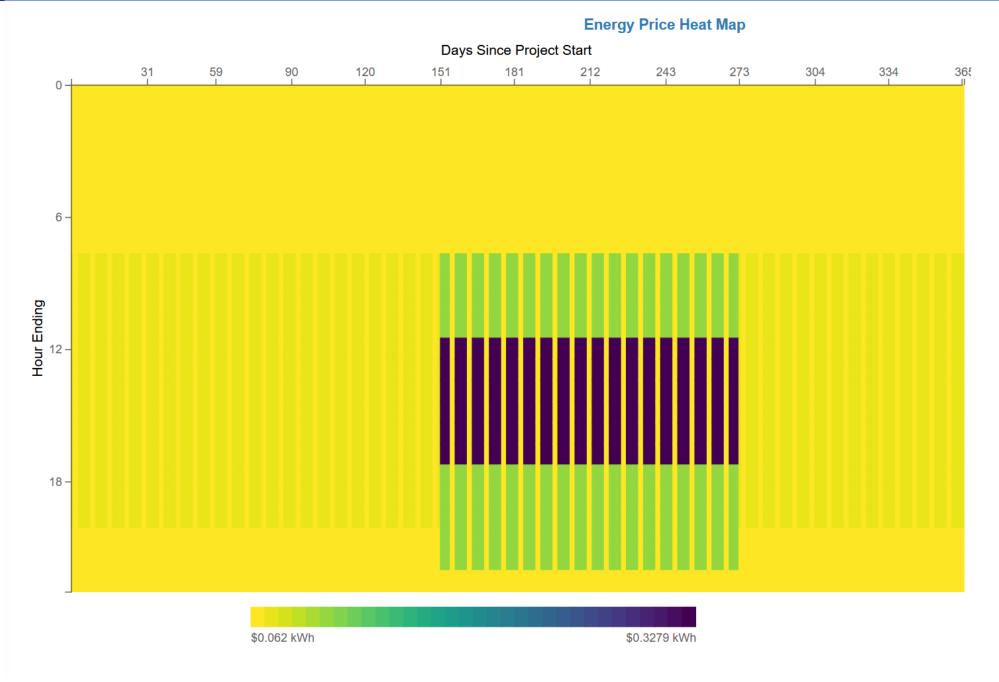


Pro-forma (Nominal Cash Flow)

Year	Avoided Demand Charge	Avoided Energy Charge	Battery Capital Cost	Battery Fixed O&M Cost	Battery Variable O&M Costs
CAPEX Year	\$0	\$0	-\$8,365,350	\$0	\$0
2021	\$315,458	\$474,998	\$0	\$0	-\$38,479
2022	\$322,398	\$485,448	\$0	\$0	-\$39,326
2023	\$329,491	\$496,128	\$0	\$0	-\$40,191
2024	\$336,739	\$507,043	\$0	\$0	-\$41,075
2025	\$344,148	\$518,198	\$0	\$0	-\$41,979
2026	\$351,719	\$529,598	\$0	\$0	-\$42,902
2027	\$359,457	\$541,249	\$0	\$0	-\$43,846
2028	\$367,365	\$553,157	\$0	\$0	-\$44,811
2029	\$375,447	\$565,326	\$0	\$0	-\$45,797
2030	\$383,707	\$577,763	\$0	\$0	-\$46,804
2031	\$392,148	\$590,474	\$0	\$0	-\$47,834
2032	\$400,775	\$603,465	\$0	\$0	-\$48,886
76 4773 00-7 846676-0-34	www.epri.com	© 2020 Electric Power	Research Institute, Inc. All rights reserved	ł.	


10.41-

Operational Results (Winter - Mostly Flat Energy Prices)



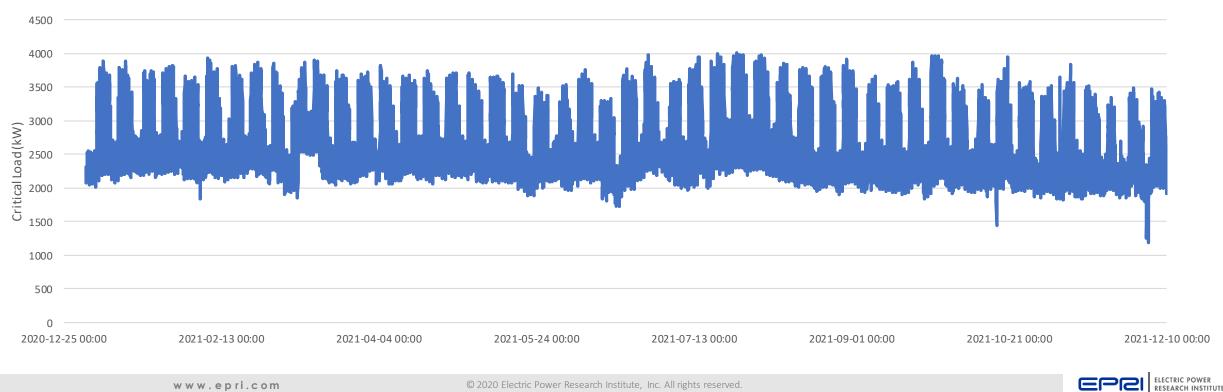
Operational Results (Summer – Strong TOD Energy Prices)

Size Results

System Name	Energy Rating (kWh)	Charge Rating (kW)	Discharge Rating (kW)	Duration (hours)	Power Capacity (kW)		Quantity
Battery	21,823.0000	3,637.0000	3,637.0000	6.0003		0.0000	1
Rated Power and	Energy Cost						
Costs for Battery							
	\$8,365,350.00				Total Cost		
		\$0.00			Fixed Cost		
		\$5,455,750.00			Cost per kWh		
		= 2	1,823.0 kWh x \$250/kWh				
		\$2,909,600.00			Cost per kW		
		= 3	637.0 kW x \$800/kW				

Conclusions

- The maximum demand charge savings for a 3,637 kW battery would be
 - \$8.77/kW * 3,637 kW * 12 mo = **\$382,757/year**
- Given the load and battery's energy capacity, this system could optimally achieve \$315,548/year
- A real system would likely actually achieve less than this depending on the quality of its control or real-world performance.


Conclusions

- Optimal energy charge savings: \$474,998 per year
 - 20 years of consistent performance
 - Optimal result for 1 year does not consider degradation
 - Actual operation should be more conservative with the battery and result in lower energy charge savings.

Conclusions - Reliability

Critical load > economically-optimal battery power capacity

