

This webcast is being recorded. Your participation provides consent to the recording.

DER-VET Task Force

ESIC Working Group 1: Grid Services and Analysis

Miles Evans | EPRI Andrew Etringer | EPRI

January 6, 2022

Webcast Reminders

This webcast is being recorded. Your participation provides consent to the recording.

Please mute your phones when you are not speaking. To un-mute, press *6 or push the un-mute icon in WebEx.

Abide by Antitrust Guidelines

Chat to "Everyone" for maximum interaction

The slides and recordings will be posted to www.der-vet.com/esictf/

Agenda:

- DER-VET Software Update
- CHP Validation Paper
- Task Force 2022

DER-VET Software Update

DER-VET and Log4j vulnerability

Is DER-VET susceptible to the Java Log4j vulnerability?

No.

For DER-VET in particular, there is no impact. DER-VET does not use any Java code or libraries, and we do not host our app as a website (so there are no servers to worry about). All of the Desktop App (GUI) and command-line (Python) versions of DER-VET that EPRI has released do not have any Log4j vulnerabilities.

- Bug Fixes (Mostly Python backend)
 - Known Bugs (under development):
 - MACRS depreciation value cannot exceed 20 years
 - Enable user service to apply min charge and discharge constraints
 - FR energy throughput cost does not handle RTE
 - DR not compatible with bill reduction services
 - Coupled sensitivity analysis feature can have errors
 - Variable O&M in Pro Forma should include energy throughput from ancillary services
 - GUI Battery cannot be saved in certain circumstances

Thank you for reporting these bugs with us.

Please do send any new bug reports to us and we will address them.

Python Backend New Capabilities

- New Technologies for thermal loads: CHP / Boiler / Chiller
 Note: these technologies will not be a part of the GUI in this release
- Fuel Costs: improved methods
 - www.der-vet.com/esictf/ (ESIC Task Force Meeting on 12/02)
- Support for more recent Python versions
 - Python 3.6 has reached it's EOL

GUI Improvements

- Effort to refactor code using 'DRY' principle
 - Removes code redundancy
 - New features can be added easier and faster
 - Reduces the likelihood of bugs
- Simplification of project import/export
 - Single JSON file
 - Python script to translate older format to new format
- Made all technologies single-page
 - For better user experience

CHP Validation Paper

CHP Validation Paper

- Available free to the public on epri.com
- EPRI deliverable number 3002021882
- Formulation and realistic validation case studies

https://www.epri.com/research/products/000000003002021882

Case Study 1 - WWTP

CHP

- offsets need for boiler (capital cost savings)
- reduces electricity costs (demand and energy charge reduction)
- increases fuel costs

	Base Case	Change Case with CHP
Grid-connected	Yes	Yes
Boiler	Yes 6 MMBtu/hr $\eta = 80\%$	No
СНР	No	Yes 1.75 MW $\frac{P}{H} = 1$ $MSR = 1$
Chiller	Not applicable	Not applicable

CHP fully covers site thermal loads

Case Study 2 - Industrial

CHP

- Powers the chiller with heat directly instead of electricity
- Reduces electricity costs
- Offsets the need for a boiler

	Base Case	Change Case with CHP
Grid-connected	Yes	Yes
Boiler	Yes 35 MMBtu/hr $\eta = 80\%$	No
СНР	No	Yes, gas turbine 6 MW $\frac{P}{H} = 0.5$ $MSR = 10^4$
Chiller	Yes, electric chiller 560 ton COP = 5	Yes, absorption chiller powered by CHP COP = 1.42

CHP and heat-powered chiller cover site thermal loads

Case Study 3 - Hospital

- Boiler cannot be totally offset
- CHP
 - Reduces boiler use
 - Powers chiller instead of electricity
 - Reduces electricity costs

	Base Case	Change Case with CHP
Grid-connected	Yes	Yes
Boiler	Yes 25 MMBtu/hr $\eta = 80\%$	Yes 9 MMBtu/hr $\eta = 80\%$
СНР	No	Yes, gas turbine 3.3 MW $\frac{P}{H} = 0.45$ $MSR = 10^{2}$
Chiller	Yes, electric chiller 3400 ton COP = 5	Yes, absorption chiller powered by CHP COP = 1.42

Task Force 2022

Next Meeting Feb 3, 2022 11 AM Pacific Time

